
International Conference on Mechanical, Industrial and Energy Engineering 2018

 23-24 December, 2018, Khulna, BANGLADESH

ICMIEE18-324

Techniques to Improve the Parallel Finite Element Method to Solve Large Scale Problems

Abul Mukid Mohammad Mukaddes
1
, Masao Ogino

2
, and Ryuji Shioya

3

1
Shahjalal University of Science and Technology, Bangladesh

2
 Information Technology Centre, Nagoya University, JAPAN

3
Faculty of Information Sciences and Arts, Toyo University, JAPAN

mukaddes1975@gmail.com, masao.ogino@cc.nagoya-u.ac.jp, shioya@toyo.jp

ABSTRACT

With advent of computer technology finite element method has achieved the popularity in the simulation of engineering

problems. In order to get the accurate result, the finite element discretization of the problem should be as fine as possible.

The finest discretization of three dimensional (3D) problems results in the large linear systems of equations. Consequently,

the solution of equation having millions of co-efficient has become the biggest challenge of the researchers. Recent

development of the computer technology necessitates the efficient ways to solve those linear systems of equations using less

memory and time. In this paper, some efficient ways have been proposed to solve large scale heat transfer and solid

mechanics problems using the parallel finite element methods. Firstly, an iterative method with different preconditioners is

implemented in the both thermal and solid problems and significant results have been achieved. Secondly, it is shown that

use of sparse matrix storage scheme reduces the computation time and the required memory. Different variations of sparse

matrix storages schemes have been studied here for different class of engineering problems.

Keywords: Finite element, domain decomposition, compressed sparse row, heat conduction, preconditioner

1. Introduction

ADVENTURE System [1] has been developed to solve

large scale engineering problems in the parallel

computer. Adventure_Thermal is one of its module that

can solve large scale steady and unsteady heat

conduction problems. The basic algorithm is the

Hierarchical Domain Decomposition Method (HDDM)

which is based on the non-overlapping domain

decomposition method. In this method, the whole

domain is divided into parts and then each part is

divided into subdomains. Each subdomain problem is

solved using finite element technique. The Conjugate

Gradient (CG) method is used to solve the interface

problem that is constituted by share nodes of

subdomains [2, 3]. The finite element discretization of

the subdomain problems results in the sparse matrix.

Sparse matrices, by definition are populated by many

zeroes and thus special storage schemes are used to

enable efficient storage and computational operations.

These representations usually store the non-zero values

of the matrix with additional indexing information about

the position of these values [4]. The HDDM method

used in the Adventure_Thermal is gradually improved

with different ways. The research is still going on to

make the module faster for the users. The techniques

that are implemented to improve parallel finite element

method used in Adventure system are discussed in this

paper.

First: The subdomain problem is solved using the direct

linear solution technique and iterative Conjugate

Gradient (CG) method is used to solve the interface

problem. The CG method is improved after

implementing a suitable preconditioner. It is shown here

that Balancing Domain Decomposition (BDD) can be

an efficient preconditioner. This reduces the

computation time and memory significantly when the

problem is solved in the parallel computer.

Second: Both subdomain problem and interface

problem is solved using the iterative CG methods which

improves the computational time and memory

significantly when the problem is solved in single

computer.

Third: The CG method that is employed to solve the

interface problem uses the Sparse Matrix Vector

multiplication (SpMxV) as its basic operation. The non-

zero sparse matrix storage formats used in this module

are based on Compressed Sparse Row (CSR) [4]. The

variations of this method are investigated in both

thermal and solid problems. All CSR type storage

formats are compared with the traditional skyline

problems. They outperform the skyline method in terms

of memory and computation time. Again in the

construction part of the BDD type preconditioners,

matrix vector multiplication is necessary thus sparse

matrix storage schemes are used there too.

The subdomain discretization is discussed in the next

section. BDD preconditioner and sparse matrix storage

formats are introduced in section 3 and 4 respectively.

The computational performances are given in section 5.

2. Subdomain Discretization

After the finite element discretization of the partial

differential equation of heat transfer and structural

problems yields a linear system of form,

Ku = f (1)

where K is the global stiffness matrix, u is unknown

vector and f is a known vector. For a large scale problem,

the linear system (1) cannot be solved using a single

processor due to memory constraint. The solution is to

mailto:mukaddes1975@gmail.com
mailto:masao.ogino@cc.nagoya-u.ac.jp
mailto:shioya@toyo.jp

ICMIEE18- 324-2

use the parallel computer. The domain decomposition

method is a popular technique to solve a large scale

finite element problem in the parallel computing

environment.

The method decomposes the domain  into N non-

overlapping subdomains,   .N,...,ii 1 Thus the stiffness

matrix K of equation (1) could be generated by

subassembly:

 


N

i

Tiii RKRK
1

)()()((2)

where T)i(R is the 0-1 matrix which translates the

global indices of the nodes into local (subdomain)

numbering. Denoting)i(u as the vector corresponding

to the nodes in)i( , it can be expressed as

uRu T)i()i( . Each)i(u is split into degrees of

freedom)i(
Bu , which correspond to)i( , called

interface degrees of freedom,)i(
Iu

 for interior degrees

of freedom and
)(i

Tu for essential boundary conditions

(temperature for heat conduction problem). The

subdomain matrix)i(K , vector)i(u are then split

accordingly:

,

)()()(

)()()(

)()()(

)(





















i

TT

i

TB

i

TI

i

BT

i

BB

i

BI

i

IT

i

IB

i

II

i

KKK

KKK

KKK

K

















)(

)(

)(

i

T

i

B

i

I

u

u

u

. (3)

Similarly equation (1) can be written as


















































T

B

I

T

B

I

TTTBTI

BTBBBI

ITIBII

f

f

f

u

u

u

KKK

KKK

KKK
 . (4)

 After eliminating the interior degrees of freedom,

problem (4) is reduced to a problem on interface

gSuB  (5)

where the Schur complement  


N

i

Ti

B

ii

B RSRS
1

)()()(is

assumed to be positive definite, Bu is the vector of the

unknown variables on the interface, g is a known

vector and)i(S are the local Schur complements of

subdomain N,...,i 1 , assumed to be positive semi-

definite. The problem (5) is solved by the Conjugate

Gradient (CG) method which can use a preconditioner

like Balancing Domain Decomposition (BDD) which is

first proposed by Jan Mandel [5].

3. Balancing Domain Decomposition

The BDD preconditioner proposed by Jan Mandel

is

constructed by solutions of the local Neumann-

Neumann problems on subdomains coupled with a

coarse problem in a coarse space. The BDD

preconditioner is of the form:

   clccBDD SQIQSQIQM 1 (6)

where lQ is the local level part [5] and cQ is the

coarse level part of the preconditioner.

3.1 Coarse Level

The application of the coarse term
TT

c RSRRRQ 0

1

000)( amounts to the solution of a

coarse problem whose coefficient matrix is
000 SRRS T .

The operator
0R translates the coarse degrees of

freedom to the corresponding global degrees of freedom

and is defined by

 )()()()1()1()1(

0 ,...., NNN

BB ZDRZDRR  (7).

For the scalar heat conductive problem,)(iZ is a column

constant vector and can be defined by
TiZ)1...1()( (8)

where the number of element “1” is for each interface

point in subdomain i . The operator
0R is a n by N

matrix, where n is the dimension of S . The

implementation of the BDD preconditioner (6) goes as

follows

:

Step 1: Balance the original residual by solving the

coarse problem for an unknown vector
N :

rRS T

00  . (9)

Step 2: Set

0SRrs  . (10)

Step 3: Solve Neumann-Neumann problems and

average these results

 


N

i

Ti

B

Tiiii

B sRDSDRu
1

)()()()()(. (11)

Step 4: Compute

uSrs  . (12)

Step 5: Solve the coarse problem again for an

unknown vector N

sRS T

00  . (13)

Step 6: Find the preconditioned vector

0Ruz  . (14)

The equation (6) can also be expressed

as:

  11)()(  SPISQPIPM lBDD
 (15)

where SQP c is the S orthogonal projection onto the

coarse space.

The construction of the BDD preconditioner uses the

matrix vector multiplication in equation (10) and (12)

where sparse matrix storages schemes are used.

ICMIEE18- 324- 3

4. Sparse Matrix Storage Formats

The matrix originates from the finite element

discretization is naturally sparse pattern. The pattern of

sparse matrix contains many zero elements within the

non-zero elements. The most popular useful storage

technique is the Skyline method which cannot avoid

storing of zero elements within the matrix.

In order to take the advantage of avoiding the large

number of zero elements, special formats are used to

store sparse subdomain matrices. The main goal is to

represent only the non-zero elements (nnz) considering

the memory requirements and the computation time.
Several sparse matrix storage techniques are described

in this section and implemented in Adventure systems.

Some of the techniques are described here.

Skyline or Variable Band (SKY)

The Skyline representation becomes popular for direct

solvers especially when pivoting is not necessary. For

symmetric matrices, this representation only stores the

lower triangular matrix and hence requires half storage

space. The matrix elements are stored using three

arrays: data, row_ptrn, col_ind. The array data stores

the elements of A row by row, col_ind contain column

number of first element of each row and row_ptr array

points to the start of every row.

This storage format stores some zero elements while

other methods explained below do not. The skyline

storage format of the examples matrix A is shown below.

A =























0.110.100.00.90.0

0.10

0.0

0.9

0.0

0.80.00.70.6

0.00.50.40.0

0.70.40.30.2

0.60.00.20.1

data (13):

1.0 2 3 4 5 6 7 0 8 9 0 10 11

row_ind(6):

1 2 4 6 10 13
col_ind(5):

1 1 2 1 2

Coordinate Storage (COO)

The simplest sparse matrix storage structure is COO. It

uses three arrays of length nnz(number of non-zeroes) to

store the sparse matrix: data, row_ind and col_ind. The

array data stores the non-zero elements of the sparse

matrix. The row_ind and col_ind stores the row and

column indices of the corresponding element. The COO

storage format of the example matrix A is shown below.

data

1.0 2 3 4 5 6 7 8 9 10 11

row_ind:

1 2 2 3 3 4 4 4 5 5 5
col_ind:

1 1 2 2 3 1 2 4 2 4 5

Compressed Sparse Row (CSR)

The CSR format is specified by {data, row_ptr and

col_ind}. The 1D array data of length nnz contains the

non-zero elements of A row-wise fashion, col_ind of

length nnz contains the column indices which

correspond to the non-zero elements in the array data.

The integer vector row_ptr of length nrow+1 contains

the pointers to the beginning of each row in the array

data and col_ind. With the row_ptr array we can easily

compute the number of non-zero elements in the i
th

 row

as row_ptr[i+1] - row_ptr[i]. The last element of

row_ptr is nnz. The CSR representation of an example

symmetric matrix A:

data(11):

1.0 2 3 4 5 6 7 8 9 10 11

col_ind(11)

1 1 2 2 3 1 2 4 2 4 5

row_ptr(6) 1 2 4 6 9 11

Consider the symmetric part of a matrix (figure-1)

which originates from structural problems. The CSR

storage of the above matrix is shown below. The

conventional CSR technique stores the elements of

matrix using data, col_ind and row_ptr (figure-2). The

pattern of the matrix has 3 off-diagonal block matrix

and 4 diagonal tri-angular matrix. The diagonal block

matrix and off-diagonal block matrix can be stored in

separate vectors (diag and data). In that case only

location of first element of each off-diagonal block

matrix is enough to locate the other elements. As a

result the brow_ptr and bcol_ind will become like the

figure-3 shown. The storing method is named as

diagonal block compressed sparse row (DBCSR).

1
 2 3

 4 5 6
 7 8 9 10

 11 12 13 14 15
 16 17 18 19 20 21

22 23 24 25

26 27 28 29 30

31 32 33 34 35 36

 37 38 39

40
 41 42 43

44 45

 46 47 48

49 50 51

Fig.1 Matrix format (B) for structural problem

ICMIEE18- 324- 4

data[51] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 18 19 12 21 22 23 24 25 26 27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

col_ind [51] 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1

 2 3 4 5 3 4 5 6 3 4 5 6 7 3 4 5 6

7 8 0 1 2 9 0 1 2 9 10 0 1 2 9 10 11

row_ptr [12] 0 1 3 6 10 15 21 25 30 36 40 45 51

Fig. 2 CSR storage of block matrix B

diag[24] 1 2 3 4 5 6 10 14 15 19 20 21 25 29 30 34 35

36 40 44 45 49 50 51

data[27] 7 8 9 11 12 --- 22 23 24 26 --- 37 38 29 41 -- 48

brow_ptr (4) 0 9 18 26

bcol_ind (3) 0 3 0

Fig. 3 DBCSR storage of block matrix B

The advantage of DBCSR is that diag does not indexing

thus indexing part reduces the required memory. This

technique is implemented in Adventure_Solid. In this

research, some others CSR type techniques are

identified and implemented in the Adventure System.

Detail results are shown in the next section

5. Performance Evaluation

5.1. Model Description

The model used to investigate the performance of

ADVENTURE_Thermal in different aspects is High

Temperature Test Reactor (HTTR) shown in Figure-2.

The model parameters are given in Table-1.

5.2 Performance of preconditioner

The balancing domain decomposition method has been

implemented in both Adventure_Thermal and

Adventure_Solid. After implementing BDD, in the

Adventure_Thermal, the CG converges rapidly with

Fig. 4 High Temperature Test Reactor (HTTR)

Table-1 Parameters of HTTR
Model meshing

points

elements #sub #parts #proc.

Mesh

1

1,893,340

1,167,268

4800 6 6

Mesh

2

13,853,784

9,338,144

76800 96 96

The HTTR model is analysed using the

Adventure_Thermal-2.0. Figure 5 and Table 1 show the

computational results of Mesh 1 of HTTR model. BDD

takes less computational time but require more memory.

In all types of preconditioning techniques, the CSR

shows better results compare to Skyline storage

schemes.

Fig. 5 Convergence of CG method

Table 1 Computational results (1.8 M mesh points)

Precon. Storage

formats

#iter. Total

time(s)

Mem.

(MB/pro)

None SKY 984 233 587

CSR 956 130 350

Diagonal

Scaling

SKY 613 150 587

CSR 603 86 351

BDD SKY 33 42 829

CSR 33 31 659

ICMIEE18- 324- 5

5.3 Performance of Sparse Storage Formats

In order to find out the performance of different sparse

storage formats, a structural problem of 5.4 M meshing

points is analyzed using the Adventure_Solid. The

memory required for the solution of a structural problem

having 5.4 M meshing points using different matrix

storage techniques are shown in figure 6. The figure

gives the information that CSR types require less

memory compare to the skyline storage schemes.

Among the different CSR types, DBCSR shows best

results in terms of memory requirement and

computation time (figure 7).

Fig. 6 Memory required for different storage formats

0

200

400

600

800

1000

Ti
m

e
(s

e
c)

Storage Formats

Fig. 7 Time required for different storage formats

Fig. 8 Comparisons of BDD, DDM and AllCG

5.4 Performance of AllCG solvers

Both Adventure_Thermal and Adventure_Solid uses the

CG solver to solve the interface problem and direct

Gauss elimination technique is used to solve the interior

of the subdomain problem. Recently a new solver is

introduced to Adventure_Thermal called AllCG which

solve both interface and interior problems using CG

iterative method. According to figure-8 though it

converges slowly but the computational time is reduced.

It is advised to use this solver when

Adventure_Theremal is used in a single computer.

6. Conclusion

Several techniques to solve the large scale finite element

problems efficiently are studied. They are implemented

in the open source CAE software Adventure System.

Large scale problem of having 5.4 million meshing

points is solved in the parallel computer to investigate

the different preconditioning techniques and sparse

matrix storage formats. Both thermal and structural

problems CSR shows better performance. DBCSR

shows best performance for the case of structural

problems.

References

[1] Adventure project, http://adventure.sys.t.u-

tokyo.ac.jp/

[2] Mukaddes, A.M.M., Ogino, M., Kanayama, H. and

Shioya, R., A Scalable Balancing Domain

Decomposition Based Preconditioner for Large

Scale Heat Transfer Problems, JSME International

Journal, Series B, Vol. 49, No. 2, pp. 533-540.

[3] Shioya, R., Ogino, M., Kanayama, H. and Tagami,

D., Large Scale Finite Element Analysis with a

Balancing Domain Decomposition Method, Key

Engineering Materials., 243-244 (2003), p.21-26.

[4] Mandel, J., Balancing Domain Decomposition,

Comm. on Numerical Methods in Engineering, Vol.

9 (1993), p. 223-241.

152 Sec

1900 MB

191 Sec

900 MB

141 Sec

719 MB

http://adventure.sys.t.u-tokyo.ac.jp/
http://adventure.sys.t.u-tokyo.ac.jp/

