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ABSTRACT 

With advent of computer technology finite element method has achieved the popularity in the simulation of engineering 

problems. In order to get the accurate result, the finite element discretization of the problem should be as fine as possible. 

The finest discretization of three dimensional (3D) problems results in the large linear systems of equations.  Consequently, 

the solution of equation having millions of co-efficient has become the biggest challenge of the researchers. Recent 

development of the computer technology necessitates the efficient ways to solve those linear systems of equations using less 

memory and time. In this paper, some efficient ways have been proposed to solve large scale heat transfer and solid 

mechanics problems using the parallel finite element methods. Firstly, an iterative method with different preconditioners is 

implemented in the both thermal and solid problems and significant results have been achieved. Secondly, it is shown that 

use of sparse matrix storage scheme reduces the computation time and the required memory. Different variations of sparse 

matrix storages schemes have been studied here for different class of engineering problems.    
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1. Introduction  

ADVENTURE System [1] has been developed to solve 

large scale engineering problems in the parallel 

computer. Adventure_Thermal is one of its module that 

can solve large scale steady and unsteady heat 

conduction problems. The basic algorithm is the 

Hierarchical Domain Decomposition Method (HDDM) 

which is based on the non-overlapping domain 

decomposition method. In this method, the whole 

domain is divided into parts and then each part is 

divided into subdomains. Each subdomain problem is 

solved using finite element technique. The Conjugate 

Gradient (CG) method is used to solve the interface 

problem that is constituted by share nodes of 

subdomains [2, 3].  The finite element discretization of 

the subdomain problems results in the sparse matrix. 

Sparse matrices, by definition are populated by many 

zeroes and thus special storage schemes are used to 

enable efficient storage and computational operations. 

These representations usually store the non-zero values 

of the matrix with additional indexing information about 

the position of these values [4]. The HDDM method  

used in the Adventure_Thermal is gradually improved 

with different ways. The research is still going on to 

make the module faster for the users. The techniques 

that are implemented to improve parallel finite element 

method used in Adventure system are discussed in this 

paper.  

First: The subdomain problem is solved using the direct 

linear solution technique and iterative Conjugate 

Gradient (CG) method is used to solve the interface 

problem. The CG method is improved after 

implementing a suitable preconditioner. It is shown here 

that Balancing Domain Decomposition (BDD) can be 

an efficient preconditioner. This reduces the 

computation time and memory significantly when the 

problem is solved in the parallel computer. 

Second: Both subdomain problem and interface 

problem is solved using the iterative CG methods which 

improves the computational time and memory 

significantly when the problem is solved in single 

computer.   

Third: The CG method that is employed to solve the 

interface problem uses the Sparse Matrix Vector 

multiplication (SpMxV) as its basic operation. The non-

zero sparse matrix storage formats used in this module 

are based on Compressed Sparse Row (CSR) [4]. The 

variations of this method are investigated in both 

thermal and solid problems. All CSR type storage 

formats are compared with the traditional skyline 

problems. They outperform the skyline method in terms 

of memory and computation time.  Again in the 

construction part of the BDD type preconditioners, 

matrix vector multiplication is necessary thus sparse 

matrix storage schemes are used there too.  

The subdomain discretization is discussed in the next 

section. BDD preconditioner and sparse matrix storage 

formats are introduced in section 3 and 4 respectively. 

The computational performances are given in section 5. 

2. Subdomain Discretization 

After the finite element discretization of the partial 

differential equation of heat transfer and structural 

problems yields a linear system of form, 

Ku = f                                                    (1) 

where K is the global stiffness matrix, u is unknown 

vector and f is a known vector. For a large scale problem, 

the linear system (1) cannot be solved using a single 

processor due to memory constraint. The solution is to 
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use the parallel computer. The domain decomposition 

method is a popular technique to solve a large scale 

finite element problem in the parallel computing  

environment. 

The method decomposes the domain   into N  non-

overlapping subdomains,   .N,...,ii 1  Thus the stiffness 

matrix K  of equation (1) could be generated by 

subassembly:           

 


N

i

Tiii RKRK
1

)()()(                                   (2) 

where T)i(R  is the 0-1 matrix which translates the 

global indices of the nodes into local (subdomain)  

numbering. Denoting )i(u as the vector corresponding 

to the nodes in )i( , it can be expressed as 

uRu T)i()i(  .  Each )i(u  is split into degrees of 

freedom )i(
Bu , which correspond to )i( , called 

interface degrees of freedom, )i(
Iu

 
 for interior degrees 

of freedom and 
)(i

Tu  for essential boundary conditions 

(temperature for heat conduction problem).  The 

subdomain matrix )i(K , vector )i(u  are then split 

accordingly: 
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Similarly equation (1) can be written as 
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 After eliminating the interior degrees of freedom, 

problem (4) is reduced to a problem on interface 

gSuB                 (5) 

where the Schur complement  


N

i

Ti

B

ii

B RSRS
1

)()()( is 

assumed to be positive definite, Bu  is the vector of  the 

unknown variables on the interface, g  is a known 

vector and )i(S  are the local Schur complements of 

subdomain N,...,i 1 , assumed to be positive semi-

definite. The problem (5) is solved by the Conjugate 

Gradient (CG) method which can use a preconditioner 

like Balancing Domain Decomposition (BDD) which is 

first proposed by Jan Mandel [5]. 

 
3. Balancing Domain Decomposition  

The BDD preconditioner proposed by Jan Mandel
 
is 

constructed by solutions of the local Neumann-

Neumann problems on subdomains coupled with a 

coarse problem in a coarse space.  The BDD 

preconditioner is of the form: 

 

   clccBDD SQIQSQIQM 1       (6)                         

where lQ  is the local level part [5] and cQ  is the 

coarse level part of the preconditioner.   

3.1 Coarse Level 

The application of the coarse term 
TT

c RSRRRQ 0

1

000 )(   amounts to the solution of a 

coarse problem whose coefficient matrix is
000 SRRS T .  

The operator 
0R  translates the coarse degrees of 

freedom to the corresponding global degrees of freedom 

and is defined by  

 )()()()1()1()1(

0 ,...., NNN

BB ZDRZDRR         (7).            

For the scalar heat conductive problem, )(iZ  is a column 

constant vector and can be defined by 
TiZ )1...1()(                                          (8) 

where the number of element  “1”  is for each interface 

point in subdomain i .  The operator 
0R  is a n  by N  

matrix, where n  is the dimension of S . The 

implementation of the BDD preconditioner (6) goes as 

follows
 
: 

Step 1:  Balance the original residual by solving the 

coarse problem for an unknown vector   
N : 

rRS T

00  .                           (9)                                                             

Step 2:  Set  

0SRrs  .                      (10)                                                                  

Step 3:  Solve  Neumann-Neumann problems and 

average these results 
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)()()()()( . (11)                                     

Step 4: Compute  

uSrs  .                             (12)                                                                     

Step 5: Solve the coarse problem again for an 

unknown vector N  

sRS T

00  .                             (13)                                                                      

Step 6: Find the preconditioned vector 

0Ruz  .                            (14)                                                                

The equation (6) can also be expressed
 
as: 

  11 )()(   SPISQPIPM lBDD
  (15) 

 

where SQP c  is the S orthogonal projection onto the 

coarse space. 

The construction of the BDD preconditioner uses the 

matrix vector multiplication in equation (10) and (12) 

where sparse matrix storages schemes are used. 
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4. Sparse Matrix Storage Formats 

The matrix originates from the finite element 

discretization is naturally sparse pattern. The pattern of 

sparse matrix contains many zero elements within the 

non-zero elements. The most popular useful storage 

technique is the Skyline method which cannot avoid 

storing of zero elements within the matrix.  

In order to take the advantage of avoiding the large 

number of zero elements, special formats are used to 

store sparse subdomain matrices. The main goal is to 

represent only the non-zero elements (nnz) considering 

the memory requirements and the computation time. 
Several sparse matrix storage techniques are described 

in this section and implemented in Adventure systems. 

Some of the techniques are described here.  
 

Skyline or Variable Band (SKY) 

The Skyline representation becomes popular for direct 

solvers especially when pivoting is not necessary. For 

symmetric matrices, this representation only stores the 

lower triangular matrix and hence requires half storage 

space. The matrix elements are stored using three 

arrays: data, row_ptrn, col_ind. The array data stores 

the elements of A row by row, col_ind contain column 

number of first element of each row and row_ptr array 

points to the start of every row.  

This storage format stores some zero elements while 

other methods explained below do not. The skyline 

storage format of the examples matrix A is shown below.   

 

A  =   























0.110.100.00.90.0

0.10

0.0

0.9

0.0

0.80.00.70.6

0.00.50.40.0

0.70.40.30.2

0.60.00.20.1

  

 

data (13): 
 

1.0 2 3 4 5 6 7 0 8 9 0 10 11 

row_ind(6): 

1 2 4 6 10 13 
col_ind(5): 

1 1 2 1 2 
 

Coordinate Storage (COO) 

The simplest sparse matrix storage structure is COO. It 

uses three arrays of length nnz(number of non-zeroes) to 

store the sparse matrix: data, row_ind and col_ind. The 

array data stores the non-zero elements of the sparse 

matrix. The row_ind and col_ind stores the row and 

column indices of the corresponding element. The COO 

storage format of the example matrix A is shown below. 

data 
 

1.0 2 3 4 5 6 7 8 9 10 11 

 

 

row_ind: 

1 2 2 3 3 4 4 4 5 5 5 
col_ind: 

1 1 2 2 3 1 2 4 2 4 5 
 

Compressed Sparse Row (CSR) 

The CSR format is specified by {data, row_ptr and 

col_ind}. The 1D array data of length nnz contains the 

non-zero elements of A row-wise fashion, col_ind of 

length nnz contains the column indices which 

correspond to the non-zero elements in the array data. 

The integer vector row_ptr of length nrow+1 contains 

the pointers to the beginning of each row in the array 

data and col_ind. With the row_ptr array we can easily 

compute the number of non-zero elements in the i
th

 row 

as row_ptr[i+1] - row_ptr[i]. The last element of 

row_ptr is nnz. The CSR representation of an example 

symmetric matrix A: 

data(11): 
 

1.0 2 3 4 5 6 7 8 9 10 11 

 
col_ind(11) 

 
1 1 2 2 3 1 2 4 2 4 5 

 

row_ptr(6) 1 2 4 6 9 11 

 

Consider the symmetric part of a matrix (figure-1) 

which originates from structural problems. The CSR 

storage of the above matrix is shown below. The 

conventional CSR technique stores the elements of 

matrix using data, col_ind and row_ptr (figure-2). The 

pattern of the matrix has 3 off-diagonal block matrix 

and 4 diagonal tri-angular matrix. The diagonal block 

matrix and off-diagonal block matrix can be stored in 

separate vectors (diag and data). In that case only 

location of first element of each off-diagonal block 

matrix is enough to locate the other elements. As a 

result the brow_ptr and bcol_ind will become like the 

figure-3 shown. The storing method is named as 

diagonal block compressed sparse row (DBCSR). 

1 
           2 3 

          4 5 6 
         7 8 9 10 

        11 12 13 14 15 
       16 17 18 19 20 21 

      

   
22 23 24 25 

     

   
26 27 28 29 30 

    

   
31 32 33 34 35 36 

   37 38 39 
      

40 
  41 42 43 

      
44 45 

 46 47 48 
      

49 50 51 

 

Fig.1 Matrix format (B) for structural problem
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data[51] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

 18 19 12 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

 

col_ind [51] 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 

 2 3 4 5 3 4 5 6 3 4 5 6 7 3 4 5 6 

7 8 0 1 2 9 0 1 2 9 10 0 1 2 9 10 11 

 

row_ptr [12] 0 1 3 6 10 15 21 25 30 36 40 45 51 

Fig. 2 CSR storage of block matrix B 

 

 

diag[24] 1 2 3 4 5 6 10 14 15 19 20 21 25 29 30 34 35 

36 40 44 45 49 50 51 

 

data[27] 7 8 9 11 12 --- 22 23 24 26 --- 37 38 29 41 -- 48 

brow_ptr (4) 0  9  18  26 

bcol_ind (3) 0  3  0  

Fig. 3 DBCSR storage of block matrix B 

 

The advantage of DBCSR is that diag does not indexing 

thus indexing part reduces the required memory. This 

technique is implemented in Adventure_Solid. In this 

research, some others CSR type techniques are 

identified and implemented in the Adventure System. 

Detail results are shown in the next section 

 

5. Performance Evaluation 

5.1. Model Description 

The model used to investigate the performance of 

ADVENTURE_Thermal in different aspects is High 

Temperature Test Reactor (HTTR) shown in Figure-2. 

The model parameters are given in Table-1.  

5.2 Performance of preconditioner 

The balancing domain decomposition method has been 

implemented in both Adventure_Thermal and 

Adventure_Solid. After implementing BDD, in the 

Adventure_Thermal, the CG converges rapidly with 

 

 
Fig. 4 High Temperature Test Reactor (HTTR) 

 

Table-1 Parameters of HTTR 
Model meshing 

points 

elements #sub #parts #proc. 

Mesh

1 

1,893,340 

 

1,167,268 

 

4800 6 6 

Mesh

2 

13,853,784 

 

9,338,144 

 

76800 96 96 

 

 

The HTTR model is analysed using the 

Adventure_Thermal-2.0. Figure 5 and Table 1 show the 

computational results of Mesh 1 of HTTR model. BDD 

takes less computational time but require more memory. 

In all types of preconditioning techniques, the CSR 

shows better results compare to Skyline storage 

schemes.  

 

 
Fig. 5 Convergence of CG method  

 

Table 1 Computational results (1.8 M mesh points) 

 

 

 

Precon. Storage 

formats 

#iter. Total 

time(s) 

Mem. 

(MB/pro) 

None SKY 984 233 587 

CSR 956 130 350 

Diagonal 

Scaling 

SKY 613 150 587 

CSR 603 86 351 

BDD SKY 33 42 829 

CSR 33 31 659 
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5.3 Performance of Sparse Storage Formats 

In order to find out the performance of different sparse 

storage formats, a structural problem of 5.4 M meshing 

points is analyzed using the Adventure_Solid. The 

memory required for the solution of a structural problem 

having 5.4 M meshing points using different matrix 

storage techniques are shown in figure 6. The figure 

gives the information that CSR types require less 

memory compare to the skyline storage schemes. 

Among the different CSR types, DBCSR shows best 

results in terms of memory requirement and 

computation time (figure 7). 

 

 
Fig. 6  Memory required for different storage formats 
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Fig. 7 Time required for different storage formats 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Comparisons of BDD, DDM and AllCG 

5.4 Performance of AllCG solvers 

Both Adventure_Thermal and Adventure_Solid uses the 

CG solver to solve the interface problem and direct 

Gauss elimination technique is used to solve the interior 

of the subdomain problem. Recently a new solver is 

introduced to Adventure_Thermal called AllCG which 

solve both interface and interior problems using CG 

iterative method. According to figure-8 though it 

converges slowly but the computational time is reduced. 

It is advised to use this solver when 

Adventure_Theremal is used in a single computer. 

 

6. Conclusion 

Several techniques to solve the large scale finite element 

problems efficiently are studied. They are implemented 

in the open source CAE software Adventure System. 

Large scale problem of having 5.4 million meshing 

points is solved in the parallel computer to investigate 

the different preconditioning techniques and sparse 

matrix storage formats. Both thermal and structural 

problems CSR shows better performance. DBCSR 

shows best performance for the case of structural 

problems.  
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