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ABSTRACT 
Bio-heat transfer is the study of external or internal heat transfer in the biological body. In different thera-
peutic treatments especially in cancer treatment, heat is used to cure infected cells. The required tempera-
ture that will kill the infected cell should be known before starting the thermal treatment on human tissue. 
The useful ways to measure the temperature distribution on human tissue are finite difference method as 
well as analytical method in some cases. There are few reports of finite element solution of bio-heat equa-
tion in the literature. Though finite element approach is one of the efficient techniques to find the temper-
ature distribution in physical body, there have been very few reports of using this method for this particu-
lar issue. In this paper a finite element model has been developed to analyze the bio-heat transfer equation 
which is also well known as Pennes equation. Crank-Nicolson method has been used for the time discreti-
zation of the unsteady part of the problem. The developed system can be used to predict the temperature 
in human tissue under certain external heating conditions.  
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1. Introduction 

Heat transfer is an important component of bio-
logical activities. For example, skin plays a variety 
of important roles including sensory, thermoregula-
tions and body defense etc. Amongst these, the 
most important one is thermoregulation: skin func-
tions thermally as a heat generator, absorber, 
transmitter, radiator, conductor and vaporizer, thus 
acting as an important barrier for the human body 
to various outside conditions. Except some envi-
ronmental conditions skin/tissue has also to face 
some experimental conditions during some thera-
peutic treatments. Cancer treatment, treatment of 
burn injuries and diagnosis of other thermal diseas-
es requires the information of temperature distribu-
tion in living tissue. Therefore studying of the bio-
heat transfer has become popular in the bio-
mechanical engineering research area. 

In some therapeutic treatment, heat is used to kill or 
remove the infected cell. For example, the primary 
objective of the hyperthermia is to raise the tem-
perature of the infected cell to a therapeutic value, 
typical 42-460 C, and then deactivate it thermally. 

Over the years, several mathematical models have 
been developed to describe the heat transfer within 
living biological tissues. These models have been 
widely used in the analysis of hyperthermia in can-

cer treatment, laser surgery, thermal comfort treat-
ments, and many other applications. Many experi-
mental and theoretical studies have confirmed the 
important role played by thermal processes during 
hyperthermia [1]. The most widely used bio-heat 
model was introduced by Pennes in 1948 [2]. It is 
based on the classical Fourier law, and has been 
greatly simplified after introducing the concept of 
blood perfusion to study the bio-heat transfer and 
assessment of skin burns. Reports on analytical 
solution and numerical solutions of the bio-heat 
transfer problem are found in the literature.  They 
can be distinguished by the boundary conditions 
used on the skin surface, blood perfusion, heat flux 
on the skin surface and solution techniques. In 
some analytical cases sinusoidal heat flux [3] and 
sometimes cooling of the skin [4] are considered as 
boundary conditions. Researches related to the bio-
thermo-mechanical are reviewed in [5]. The result 
of boundary element method and finite element 
method for the numerical solution of the steady-
state bio-heat transfer model of the human eye are 
compared in [6, 7]. The finite element method is 
used for the thermal-magneto static analysis in bio-
logical tissues in [8].  
 
ADVENTURE_Thermal is a parallel FEM open 
source module to solve the large scale 3D heat 
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conduction problems. The module considers the 
general heat conduction equation for the solid body. 
It supports different types of boundary conditions. 
Both steady and unsteady problem can be solved 
using this module. The hierarchical domain de-
composition method is used to solve the problems 
in parallel computer. Development of ADVEN-
TURE_Thermal is a continuing process. But this 
module cannot be used to find temperature distribu-
tion in biological bodies. The inclusion of bio-heat 
transfer functions in this module is necessary. 
 
In this paper a finite element model [9, 11] has 
been developed for the numerical solution of the 
1D unsteady Pennes equations with different spatial 
heating. The Crank-Nicolson method is used for the 
time discretization. This method is compared with 
other time discretization schemes. A C code has 
been developed which can be used to measure the 
temperature distribution in the human tissue.  Later 
the function for the 3D bio-heat equation solution 
will be included in the ADVENTURE_Thermal. 

The bio-heat transfer equation is introduced in the 
section 2 while section 3 describes the finite ele-
ment discretization method. The time discretization 
scheme is explained in section 4.  Before the con-
clusion some numerical results are shown in sec-
tion 5. 

2. Bio-heat transfer 

For the study of bio-heat transfer in human tissue 
the most useful one is Pennes equation which is: 
 
ܿߩ  ௗ்

ௗ௧
= ݇ ௗమ்

ௗ௫మ
)	௕ܿ௕ߩ௕ݓ+ ௔ܶ − ܶ) + ܳ௠ +

ܳ௥(ݔ,                                     (1)                                              	(ݐ

where ߩ,ܿ, ݇  are respectively the density, the spe-
cific heat, and the thermal conductivity of the tis-
sue; ߩ௕ , ܿ௕	 denote density and specific heat of 
blood;	ݓ௕  the blood perfusion;	 ௔ܶ  the known arte-
rial temperature, and ,ݔ)ܶ	 (ݐ  is unknown tissue 
temperature;	ܳ௠  is the metabolic heat generation, 
and   ܳ௥(ݔ,  the heat source due to spatial heating  (ݐ
with respect to time	ݐ. Specific heat and density of 
both blood and tissue are changeable with respect 
to conditions. Natural and force heat convection 
coefficient between skin and surroundings can also 
be changed with change of temperature, air flow, 
postures etc. 
 
For a one dimensional problem of length L Let, 
,ݔ)ܶ 0) = ଴ܶ(ݔ)  is initial temperature, ௖ܶ  is the 
body core temperature and often regarded as a con-
stant,	ℎ଴ is the apparent heat convection coefficient 
between the skin surface and the surrounding 
air,	 ௙ܶ is the surrounding air temperature. Thus the 

boundary conditions for this particular 1-D problem 
can be written as:  

ܶ = ଴ܶ(ݔ) = ௖ܶ ݔ		ݐܽ								,	 =  ܮ

−݇ ௗ బ்(௫)
ௗ௫

= ℎ଴ൣ ௙ܶ − ݔ		ݐܽ			,൧(ݔ)ܶ = 0           (2)  

Here, the skin surface is defined at ݔ = 0 and the 
body core at   ݔ =  .ܮ

The analytical solution of the differential equation 
(1) with boundary conditions of equation (2) was 
developed by Zong-Shan Dang and Jing Lui [10]. 
The bio-heat equations (1) and (2) have also been 
solved using the finite difference method and 
boundary element method. In this paper the finite 
element approach is developed to solve the bio-heat 
equation (1) and (2).   

3. Finite element discretization 

The first step of the finite element discretization is 
to develop a weak form that is a weighted-integral 
statement and is equivalent to both the governing 
differential equation as well as certain type of 
boundary conditions. The simplest form of the 
equation (1) is  
 

ܿߩ ௗ்
ௗ௧
= ݇ ௗమ்

ௗ௫మ
− ܶܥ +  (3)             ݍ

where, ܥ௕ =  ௕ܿ௕ߩ௕ݓ

and ݍ = ௕ܥ ௔ܶ +ܳ௠ +ܳ௥(ݔ,  .(ݐ

The weak form [9] of the differential equation (3) 
was derived as  

∫ ቂܹܿߩ ௗ்
ௗ௧
+ ݇ ௗௐ

ௗ௫
ௗ்
ௗ௫
+ ݔቃ݀ݍܹ−ܹܶܥ +௫್

௫ೌ
(ܹܳ)௫ೌ + (ܹܳ)௫್ = 0  .                      (4) 

where ܹ is the weight function and ܳ is the sec-
ondary variable. 

In this paper, a linear element is considered whose 
temperature function is given as: 

௛ܶ
௘(ݔ) = ∑ ௝߮

௘(ݔ) ௝ܶ
௘ଶ

௝ୀଵ                          (5) 

Using the linear approximation of equation (5) fi-
nally a linear equation was derived [9]. That is: 

൛ܶ̇ൟ[ܥ] + {ܶ}[ܭ] = {ݍ} + {ܳ}               (6) 

where ܥ is the capacitance matrix,  ܭ is heat con-
ductive matrix and ܶ is unknown temperature and 
others are known vectors. This set of linear equa-
tion was solved using the well-known time dis-
cretization method. 
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4. Time Discretization Scheme 

A simple time integration scheme for equation 
(6)	was derived by assuming that C and K are con-
stant. In such case matrix differential equation can 
be discretized on time [11] as: 

ܥ ்೙శభି்೙

∆௧
+ ௡ାଵܶܭߙ + (1 − ௡ܶܭ(ߙ = ݍ +ܳ			    

(7)		 

where 	ܶ௡ାଵ		and			ܶ௡ are  the vectors of unknown  
nodal  values at times  n∆ݐ and (n+1)	∆ݐ  respec-
tively.  ߙ  is a weighting factor  which must be cho-
sen  in the interval between  0 and 1. In equation 
(7) the standard approximation for time derivative  

ܶ̇ =
ܶ௡ାଵ − ܶ௡

ݐ∆  
was used. When the value of  ߙ  is considered 0.5, 
the process is called the popular Crank-Nicolson 
method.                                                                                                                
The discretized equation (7) can be written as: 
( ଵ
∆௧
ܥ + ௡ାଵܶ(ܭߙ	 = ቂ ଵ

∆௧
ܥ − (1 − ቃܶ௡ܭ(ߙ	 +

																																						ܳ +  (8)              			ݍ

and can also be written in the general  form:                                                                      

௡ାଵܶܪ                         =  			௡                   (9)ܨ

where   H = ( ଵ
∆௧
ܥ +   and     (ܭߙ	

௡ܨ     = ቂ ଵ
∆௧
ܥ − (1 − ቃܭ(ߙ	 ܶ௡ + ݍ +ܳ  

The equation (8) or (9) was solved using an itera-
tive procedure. The initial temperature is known 
and then temperature of the next step can be calcu-
lated from the solution of equation (8) via the 
Gauss elimination technique.              			                                          

5. Analysis and Numerical Results 

A FEM code has been developed using the C lan-
guage to solve the numerical solution of the finite 
element model described in the previous section. 
Both steady and unsteady state results are presented 
here.   

Problem statement: 

In this paper, a tissue of length 3 cm from the skin 
surface is considered for the calculation. The con-
vection boundary conditions and temperature 
boundary conditions are considered on the skin 
surface and body core respectively.  The tissue 
properties and parameters of the boundary condi-
tions (Table 1) are applied as given in [10]. Both 
steady and unsteady problems are analyzed. Ana-
lytical results and numerical results for different 
time step are reported.  

 

Steady state results 

Steady problem is analyzed first. For FEM analysis 
21 meshing nodes and 20 linear elements are con-
sidered. The temperature profile for 21 nodes is 
shown in Figure 1. The steady state results are 
compared with the analytical solution developed by 
Zong-Shan Dang and Jing Lui [10]. The compara-
tive results are shown in Table 2 for the mesh of 21 
nodes. According to the Table 2, the FEM results 
match with the analytical results.  

Table 1 Thermo mechanical properties of tissue 

Symbols Values 

k 0.5 W/m
0
C 

h
0
             10 W/m

2 
°C 

h
f   

 100 W/m
2 
°C 

T
f 
 25 °C 

T
a
 37 °C 

T
c
 37 °C 

Q
m
 33800 W/m

3
. 

C 4000 J/kg.°C 

c
b
 4200 J/kg.°C 

Ρ 1000 kg/m
3
 

ρ
b
 1000 kg/m

3
 

W
b
 0.0005 ml/s/ml 

       

 

Figure- 1 Steady state results (21 nodes) 
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Table-2 FEM and analytical solution 

Dist. 
(m.m.) 

Temp.(◦C) 
(Ana.) 

Temp. (◦C) 
(FEM) 

0 43.1913 43.1965 
1.5 43.6912 43.6964 
3 44.1021 44.1074 

4.5 44.428 44.4332 
6 44.672 44.6771 

7.5 44.8363 44.8413 
9 44.9224 44.9274 

10.5 44.9313 44.9362 
12 44.863 44.8677 

13.5 44.7168 44.7213 
15 44.4909 44.4957 

16.5 44.1846 44.1887 
18 43.7935 43.7974 

19.5 43.3145 43.3181 
21 42.743 42.7462 

22.5 42.0736 42.0764 
24 41.2999 41.3024 

25.5 40.4147 40.4166 
27 39.4095 39.4108 

28.5 38.2749 38.2755 
30 37 37 

 

 

Figure-2 Temperature at different time ( ݐ∆ =
 (ݏ0.25

 

Figure-3 Temperature at different time (∆ݐ =  (ݏ0.5

 
Figure-4 Temperature at different time (∆ݐ =  (ݏ1.0

Unsteady state results 

In the unsteady state analysis different time incre-
ments are used to measure the temperature at dif-
ferent time. The initial temperature was 370C which 
is equal to the core temperature.  The results are 
presented in the Figure 2, 3, and 4. These figures 
show that as time passes the temperature within the 
tissue increases and finally reached to the steady 
state condition. The results of these figures consid-
er the constant spatial heating from the skin surface 
to the body core. There is no significant change of 
temperature distribution due to the change of time 
increment. The maximum temperature exists 460C 
at 6 mm below the skin surface. 
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Figure-4 Temperature at different time ( ݐ∆ =
 (ݏ0.25

A temperature distribution found without the spa-
tial heating is shown in Figure-5 for the time in-
crement (∆ݐ = ݏ0.25 ). The comparison with the 
results with spatial heating shows that the position 
of maximum temperature is changed. The maxi-
mum temperature exists near the skin surface in 
case of with spatial heating and near the middle of 
the model in case of without spatial heating.   

In the field of bio-heat transfer, finite element 
method can be used to design medical equipment 
for therapeutic applications, where operation can be 
time dependent or time independent. From this 
analysis, we have seen how temperature distribu-
tion can be changed with respect to time. The ef-
fects of time interval and different tissue properties 
can be analyzed using the developed system. Im-
pacts of spatial heating have also been evaluated 
from this analysis. Different amount of spatial heat-
ing can give different temperature distribution. So a 
required temperature distribution can be synchro-
nized by different spatial heating and different time 
limit.    

7. Conclusion 

A finite element model was developed in this work 
to analyze 1D steady and unsteady bio-heat transfer 
in biological tissue. A computer program was also 
developed using C language and the bio-heat prob-
lem was solved using it. Required temperature dis-
tribution can be found in human tissue for both 
steady and unsteady states. The FEM results coin-
cide with analytical results for problem described 
in the paper. With and without spatial heating con-
ditions are compared. The location of the maximum 
temperature is changed with the spatial heating. 
From the analysis, highest value of temperature 

was found at the distance of 6 m.m. from the skin 
(where distance from the skin to body core is 30 
m.m.), which can also be varied for different condi-
tions. Using different boundary conditions and ap-
plying different amount of heat flux one can select 
the suitable skin condition to maintain the accepta-
ble tissue temperature and destroy the infected cell.  

8. Future study 

This work concerns with the 1D finite element 
analysis of bio-heat transfer equation. The coding 
for 2D bio-heat transfer problem is going on. The 
spatial heating sometimes acts on sinusoidal func-
tion which will be added in the new code. Finally a 
3D bio-heat finite element system will be added to 
the ADVENTURE_Thermal [12] which is a mod-
ule for steady and unsteady heat conduction prob-
lems using the parallel finite element method. 
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