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ABSTRACT 

A model to predict the damage evolution and failure in unidirectional fiber-reinforced polymer-matrix composites (PMC) is 

developed using CCM-Schapery-Crack Band theory. Polymer matrix progressive damage is modeled using Schapery Theory 

(ST), which is later extended up to failure in order to account for more catastrophic failure mechanisms. The degrading elastic 

parameters of the fiber-reinforced PMC are obtained as a function of damage to finally determine the amount of damage 

associated with a PMC under uniaxial, biaxial, multiaxial and combined transverse/axial-shear loading. 
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1. Introduction  

In the last two decades, the advancement of composite 

materials has been generating technological and economic 

improvements. Advanced composite materials have been 

used in aircrafts, automobiles, industrial machinery, 

sporting goods and in many other applications. These 

applications require high-performance constituents, e.g. 

carbon fibers, glass fibers, polymers, ceramics, metals. 

Therefore, to assure the efficiency of these composite 

materials, a progressive damage and failure analysis has to 

be performed. According Pankow [1] the manufacturing of 

textile composite materials is becoming more 

economically feasible. The production of large scale 

composite structures has been continuously increasing in 

recent years. Therefore, as stated by Cox and Yang [2] 

analytical predictions of damage and failure are needed in 

the early stages of the design, reducing time and money 

spent on manufacturing the material to test the design.  

 

According Pineda [3] the lay-up and directionality of the 

load applied to a fiber-reinforced PMC determine the 

global damage and failure mechanisms generated in the 

PMC. The extent of damage in PMCs is dependent on 

various material parameters, of which the fiber volume 

fraction, matrix and fiber properties along with the type 

of loading have shown to be critical. The influence of 

these parameters on the damage in fiber reinforced PMCs 

have been investigated by several researchers. Most of 

the non-linearity observed can be attributed to the 

damage evolution in the polymer matrix. Fiber breaking 

in PMCs is rather abrupt, whereas other damage 

mechanisms like microcracking, fiber-matrix debonding, 

transverse cracking, etc. are progressive in nature. For 

example, tensile loading in the transverse direction may 

cause microcracks or voids to grow resulting in 

transverse cracks[4], Schapery[5]. Interlaminar 

separation, also known as delamination, may occur when 

transverse cracks intersect an interface between two 

adjacent layers within a laminate[6], rendering the 

laminate weak in shear and transverse loading. Another 

types of loading is compression where the degradation of 

the polymer matrix has an influence on the failure of the 

laminate. Under compressive loading along the fiber 

direction, shear strains are generated in the matrix due to 

excessive rotation of fibers causing the matrix to damage, 

and vice-versa. The laminate fails in the form of kink 

band or micro-buckling [7-10]. Therefore, it is very 

critical to account for the damage occurring in the 

polymer matrix in order to determine the extent of 

damage accumulation in the fiber-reinforced PMC. 

 

Therefore, the purpose of this paper is to model 

progressive damage and failure to determine the amount 

of damage associated with a unidirectional fiber-

reinforced PMC under any load configuration. To predict 

the progressive damage of the PMC, this model is based 

on a thermodynamically-based work potential theory 

developed by Schapery[11]. Past publications have used 

crack density, geometry, strain energy release rate, and 

other crack models to predict damage evolution [12-14]. 

The progressive damage in PMC is accounted by matrix 

micro-damage, which yields to more severe failure 

mechanisms. Therefore, ST has been extended up to 

failure in order to account for the maximum strain and 

amount of damage at which the fiber-reinforced PMC 

completely fails.  

 

2. Methodology 

2.1 Progressive Damage 

Failure initiation in the PMC is given by its critical strains, 

which are obtained by physical experiments of a small-

scale PMC. Elastic properties of the fiber and matrix, as 

well as the fiber volume fraction and matrix Poisson’s 

ratio are known variables of the model.  The fibers are 

modeled as elastic transversely isotropic material, which 

properties are shown in Table. 1. Likewise, the polymer 

matrix is modeled as elastic-plastic isotropic material, 

therefore, the equivalent stress-strain response is 

nonlinear, as shown in Fig. 1. This non-linearity in the 

stress-strain response of the polymer matrix is the 

representation of micro-structural damages that manifest 

progressive damage in the composite, reducing its 

stiffness.  In other words, progressive damage is 

represented as the region before the critical strain and it 

is accounted by matrix microdamage, i.e. microcracking, 
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void growth, fissuring, shear banding and fiber-matrix 

debonding.  

 

Table 1 Fiber Properties. 
E11 

(GPa) 

E22=E33 

(GPa) 231312
   G12=G13 

(GPa) 

G23 

(GPa) 

276 8.76 0.35 12.0 3.244 

 

 
Fig.1. Equivalent stress-strain response of the polymer 

matrix. 

 

According Pineda [3] the response of a composite in 

compression (axial or transverse) can be very different 

from that in tension. This means, it is easier for cracks to 

advance more in tension than in compression. Transverse 

cracks in compression progress under pure mode 2 and 3 

or mixed mode conditions and there are other 

mechanisms associated to the failure of the PMC, which 

are fiber kinking and microbuckling. For this reason 

compressive loads are not taken into account in this 

model. As suggested by Sicking [15], it is assumed that 

the material is elastic and there is no plastic deformation 

upon unloading. However, plastic deformation can be 

incorporated to the model as stated by Schapery [11]. The 

concentric cylinder model (CCM) is used to determine 

the upscaled PMC mechanical properties, utilizing only 

the basic constituent (fiber and matrix) properties, as 

explained in the article by Prabhakar and Waas[16]. 

 

The CCM equations corresponding to the elastic regime 

are extended into the inelastic regime, to homogenize the 

lamina beyond the elastic regime, using a series of values 

of secant moduli of the pure matrix material as opposed 

to a single value of elastic modulus. That is, `Em' of the 

matrix is not a single value, but a series of values `Es', 

where `Es' is the secant modulus of the pure matrix as 

shown in Fig. 1. By substituting a series of values of `Es' 

in expressions for E11, E22, G12, G23 obtained from the 

CCM, we obtain the corresponding series of values for 

these constants as a function of stress (or strain), based 

on the assumption of stress based or strain based 

derivation of the CCM equations. Here, E11 (fiber 

dominated) is strain based, and E22, G12 and G23 (matrix 

dominated) are stress based calculations. This implies 

that matrix dominated properties are expressed as a 

function of stress; while fiber dominated properties are 

expressed as a function of strain. 

 

2.2 Schapery Theory 

Schapery Theory (ST) accounts for the progressive 

damage in the matrix of the PMC. According to ST, the 

total work potential, WT, is equal to the sum of the 

recoverable work potential (elastic region), W, and the 

dissipated (irrecoverable) energy, WS [11]. 

 

WT = W + WS                  (1) 

Schapery (1989, 1990) shows that:  

 
𝜕𝑊𝑇

𝜕𝑆𝑚
= 0                   (2)   

 

In general, Sm accounts for any damage that a composite 

may experience. Therefore, Ws will be only function of a 

single value of S (Ws=S). Thus, equation 1 yields: 

 

𝑊𝑇 = 𝑊 + 𝑆                  (3) 

Since every time a composite material is loaded it 

undergoes structural changes (damage), thus, the 

mechanical properties of the fiber-reinforced PMC are 

affected. Likewise, the recovered energy is obtained once 

the material is unloaded and it follows the elastic path. In 

other words, dissipated energy S is shown to be the area 

above the unloaded line, while the elastic strain energy 

density W is the area below this line (triangular shaded 

area), as shown in Fig. 2. 

 

 
 

Fig.2. Stress-strain curve showing the elastic (W) and 

irrecoverable (S) portions divided by unloaded line. 

 

Differentiating with respect to S, we have: 
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𝜕𝑊

𝜕𝑆
= −1               (4)

   

It is known that the amount of energy dissipated cannot 

be recovered, therefore: 

 

𝑆 ≥ 0                                   (5) 

Moreover, since the fiber-reinforced PMC is a 

unidirectional lamina, it is considered to be a transversely 

isotropic material and from the stress-stress relation 

{𝜎} = [𝐶]{𝜀} or simply 𝜎𝑖 = 𝐶𝑖𝑗𝜀𝑗 for 𝑖, 𝑗 =1,2,3…6, the 

elastic strain energy can be related to the elastic 

constants𝐶𝑖𝑗. 

 

𝑊 =
1

2
𝐶11𝜀11

2 + 𝐶12(𝜀11𝜀22 + 𝜀11𝜀33) +
1

2
𝐶22(𝜀22

2 +

𝜀33
2 ) + 𝐶23(𝜀22𝜀33) +

1

2
𝐶44𝜀23

2 + 𝐶55(𝜀12
2 + 𝜀13

2 )        (6) 

 

Where: 

 

𝐶11 =
𝐸11

2 (ν23−1)

∆
                  (7) 

 

𝐶12 =
−𝐸11𝐸22ν12

∆
                  (8) 

 

𝐶22 =
𝐸22(𝐸22ν12

2 −𝐸11)

(1+ν23)∆
                 (9) 

 

𝐶33 =
−𝐸22(𝐸22ν12

2 −𝐸11ν23)

(1+ν23)∆
               (10) 

 

𝐶44 = 2𝐺23                (11) 

 

𝐶55 = 2𝐺12                (12) 

 

𝐶66 = 𝐶55                (13) 

 

∆= 2𝐸22ν12
2 + 𝐸11(ν23 − 1)                           (14) 

 

Substituting Equation 6 into Equation 4, the derivative of 

the elastic strain energy with respect to the damage has to 

be equal to -1. It should be noted that now the Cij are 

functions of the damage parameter (S). Therefore, we 

have, 

 
𝜕𝑊

𝜕𝑆
=

1

2

𝜕𝐶11

𝜕𝑆
𝜀11

2 +
𝜕𝐶12

𝜕𝑆
(𝜀11𝜀22 + 𝜀11𝜀33) +

1

2

𝜕𝐶22

𝜕𝑆
(𝜀22

2 +

𝜀33
2 ) +

𝜕𝐶23

𝜕𝑆
(𝜀22𝜀33) +

1

2

𝜕𝐶44

𝜕𝑆
𝜀23

2 +
𝜕𝐶55

𝜕𝑆
(𝜀12

2 + 𝜀13
2 ) =

−1                                          (15) 

 

Where, the critical strains of the fiber-reinforced PMC 

are constant and the microdamage functions (degrading 

elastic constants as a function of damage) are second 

order differential equations, so they can be solved for the 

damage evolution S.  

 

2.3 Extended Schapery Theory 

More catastrophic failure mechanisms due structural 

changes occur once the critical strain of the PMC is 

reached and the PMC stiffness decreases drastically until 

the PMC completely fails, as shown in Fig. 3. The critical 

strain is characterized as the damage initiation point, 

where the tangent stiffness tensor is not positive anymore 

and there is some damage located into the smallest length 

scale of the finite element volume (single element) [17]. 

Since the shaded area of the stress-strain response of a 

PMC (Fig. 3) describes the energy per unit volume 

dissipated during the failure process, the total amount of 

energy dissipated in the element tend to zero as the 

element length scale also approaches zero, leading to 

pathological dependence of the solution on the mesh 

density. 

 

Under transverse tension and shear loading some 

transverse cracks might appear on the matrix. These 

transverse cracks are more severe than matrix 

microdamage because they are growing abruptly rather 

than progressive. Therefore, transverse cracking and 

fiber breakage are common failure mechanisms in fiber-

reinforced PMC.  The Crack Band model is used to 

manifest these failure mechanisms. This model relates 

the fracture toughness of the material to a characteristic 

finite element length scale, both are assumed to be 

constant throughout the model to overcome pathological 

mesh dependency. This means that the total strain energy 

release rate upon complete failure (shaded area in Fig. 3) 

is always equal to the fracture toughness of the material 

by scaling the stiffness, which is assumed to decrease 

linearly after the critical strain, to a characteristic length. 

 

 
 

Fig.3 Schematic representation of stress-strain response 

of fiber-reinforced PMC up to complete failure. 

 

 



International Conference on Mechanical, Industrial and Energy Engineering 2014 

 26-27 December, 2014, Khulna, BANGLADESH 

 

ICMIEE-PI-140349- 4 

3. Results and Discussions 

The stress–strain response for the homogenized lamina of 

PMC are obtained by the CCM model and the 

nonlinearity of E22, G12 and G23 is verified and it is 

attributed to progressive damage of the polymer matrix. 

It is important to state that the axial response of the PMC 

is linear since it depends mainly on the axial stiffness of 

the fibers, which is very high compared to the stiffness of 

the polymer matrix. Otherwise, the transverse and shear 

axial responses are dominated by the behavior of the 

matrix, this is the reason of the non-linear stress-strain 

response. Then, the ST has been extended up to the 

failure state, at which the maximum strain supported by 

the PMC is reached and it completely fails, as seen in Fig. 

4 (a) and (b). Since the stiffness in the 1 direction is much 

higher compared to the other directions, Fig. 4 (b) 

reproduces a better view of the non-linear stress-strain 

responses.  

 

The elastic constants 𝐶𝑖𝑗 are plotted against the amount 

of damage (S), as shown in Fig. 5. black curves, while the 

fitted curves (second order polynomials) are colored. It 

can be observed in Fig. 5. (a) that the elastic constant in 

the 1 direction has much higher values than the other 

constants. Then, to better visualize these other constants, 

the plot is zoomed and shown in Fig. 5 (b). Similarly, 

Table 2, shows the results obtained for different 

configurations of strain loading, i.e. uniaxial, biaxial, 

multiaxial and combined axial/transverse-shear loading.  

 

 
(a) 

 
(b) 

 

Fig.4 Stress-strain responses of a homogized lamina up 

to failure. (a) Complete representation of the responses    

(b) Zoomed plot to visualize nonlinearity. 

 

 
(a) 

 

 
(b) 

 

Fig.5 Elastic constants (Cij) vs amount of damage (S). 

(a) Complete representation (b) Zoomed plot to 

visualize a comparison of original plots and 

approximated curve. 

 

Table 2 Results obtained for amount of damage (S) for 

different configurations of strain applied. 

 

𝜀11 𝜀22 𝜀33 𝜀12 𝜀23 Amount 

of 

Damage 

0.005     0 

 0.03    1.43E3 

 0.04    1.95E5 

 0.05    2.80E5 

 0.06    3.3E5 

 0.06 0.03   3.56E5 

0.05 0.06 0.03   3.89E5 

    0.05 3.4E5 

   0.03  3.86E5 

 0.03  0.03  3.92E5 

 0.03  0.03 0.05 3.95E5 

   0.05  4.17E5 

 

4. Conclusions 

A thermodynamically-based work potential theory 

developed by Schapery was presented to account for the 

effects of progressive matrix microdamage in fiber-
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reinforced PMC. Shapery Theory was expended up to the 

failure state to capture more catastrophic failure 

mechanisms as transverse cracking and fiber breakage. 

This model was based in the CCM and Crack Band 

models, which were useful to determine the homogenized 

mechanical properties of the fiber-reinforced PMC and to 

relate the fracture toughness of the PMC with a finite 

element characteristic length scale, respectively. It is 

concluded that the amount of damage is bigger for 

multiaxial and combined axial/transverse-shear strain 

loading configuration. For uniaxial and biaxial strain, the 

amount of damage is small if this value is less than the 

critical strain of the PMC in the corresponding direction. 

However, damage increases drastically once the critical 

strain is reached. A finite element computational model 

can be developed to verify these results, which is 

currently being studied. 

 
NOMENCLATURE 

Eij 

𝜀𝑖𝑗 

ij
  

Gij 

Em 

Es 

WT 

W 

Ws 

S 

Cij 

: Stiffness, GPa 

: Strain  

: Poisson’s ratio 

: Shear modulus, GPa 

: Elastic modulus of matrix, GPa 

: Secant modulus, GPa 

: Total work potential 

: Recoverable work potential 

: Dissipated energy 

: Damage parameter 

: Elastic constants 
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