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ABSTRACT 

Some numerical simulations of multi-scale physical phenomena consume a significant amount of computational 

resources, since their domains are discretized on high resolution of meshes. An enormous wastage of these resources 

occurs in refinement of sections of the domain where computation of the solution does not require high resolutions. This 
problem is effectively addressed by adaptive mesh refinement (AMR), a technique of local refinement of a mesh only in 

sections where needed, thus allowing concentration of effort where it is required. Sections of the domain needing high 

resolution are generally determined by means of a criterion which may vary depending on the nature of the problem. 

Fairly straightforward criteria could include comparing the solution to a threshold or the gradient of a solution, that is, 

its local rate of change to a threshold. The objective of this paper is to develop an adaptive mesh refinement algorithm 

for finite difference scheme using potential function approach of fourth order bi-harmonic partial differential equation. 

In the AMR algorithm developed, a mesh of increasingly fine resolution permits high resolution computation in sub-

domains of interest and low resolution in others. Then, the AMR scheme has been applied to solve a mixed boundary 

value elastic problem. In this work, the gradient of the solution has been considered as the criterion determining the 

regions of the domain needing refinement. Also the same problem is solved by classical Finite Difference Method 

(FDM) approach which uses uniform mesh over the whole numerical field. Finally, the solutions of both methods are 

presented as a comparative study to visualize the superiority of adaptive mesh refinement FDM technique over classical 
FDM technique. This analysis of superiority is done on basis comparison of solutions of both techniques with well 

known published results. 
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1. Introduction 

Elasticity is now a classical subject and its problems are 

even more classical. But somehow these stress analysis 

problems are still suffering from a lot of shortcomings. 

Two factors may really be responsible for it. Both these 

factors involve management of the boundary of elastic 

problems: one is the boundary conditions and other is 

the boundary shape. There are various methods 

available for the solution of partial differential equations, 

which are needed for the stress analysis of structures. 

The FDM is one of the oldest numerical methods known 

for solving PDE‟s. The difference equations that are 

used to model governing equations in FDM are very 

simple to computer code and the global coefficient 

matrix that is produced by FDM possesses a banded 

structure, which is very effective for good solution. In 

spite of these characteristics, the necessity of the 

management of boundary shape has lead to the 

invention of the FEM and it‟s over whelming popularity, 

specifically because of the side by side development of 

high power computer machines. Of course, the 

adaptations of the FEM relieved us from our major 

inability of managing odd boundary shapes but we are 

constantly aware of its lack of sophistication and 

doubtful quality of the solutions so obtained. That is 

why FDM is chosen as solving method over FEM. 

There is present another factor of impediment to quality 

solutions of elastic problems is the treatment of the 

transition in boundary conditions. Several attempts were 

made to overcome both these two difficulties faced in 

the management of boundaries by FDM [1-2] and 

successfully overcome against these difficulties. But, 

using these [1-2] procedures, FDM simulations of some 

multi-scale physical phenomenon consumes a 

significant amount of computational efforts and 

resources because their domain are discretized on high 

resolution of meshes to achieve a good solution. To 

reduce the computational efforts and resources, several 

adaptive mesh refinement algorithms [3-14] have been 

developed over the last thirty years. But all such studies 

have limited application of solving the problems of 

either heat transfer or fluid mechanics. Moreover, the 

governing equation for the problems is either second 

order or lower. Mesh refinement is desirable to improve 

spatial solution. However, the uniform mesh refinement 

is not perfect for the applications of which the solution 

may need different resolutions for different regions. For 

example, for the mixed-boundary value problems, fine 

resolution is typically required for regions boundary. 

But for the evolving stress analysis of elastic fields with 

complicated structures, AMR techniques are more 

preferred to locally increase mesh densities in the 
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regions of interest, thus saving the computer resources. 

The strategies of AMR can fall into two categories from 

the viewpoint of way of multi-resolution fulfilled. The 

first category includes these adaptive algorithms 

involved local mesh/stencil refinement. In these 

algorithms, either the existing mesh is split into several 

smaller cells or additional nodes are inserted locally, 

thus obtained the h-refinement. This group can be 

further categorized by the mesh type, i.e. hierarchical 

structured grid approach [3, 5-6] and unstructured mesh 

refinement approach [4]. The second category of 

adaptive algorithms involves global mesh redistribution. 

These methods move the mesh pint inside the domain in 

order to better capture the dynamic changes of solution 

and usually referred as moving mesh method or r-

refinement [12-14] and at present, this category has 

application in FEM only. In this paper, AMR technique 

of fourth order bi-harmonic PDE is developed based on 

h-refinement by splitting the existing mesh into smaller 

cells. This approach is established on regular Cartesian 

meshes and at fine/coarse cell interfaces, special 

treatment is required for the communications between 

the meshes at different levels [15]. 

 

2. Governing Equations 

Stress analysis in an elastic body is usually a three 
dimensional problem. But in most cases, the stress 

analysis of three-dimensional bodies can easily be 

treated as two-dimensional problem, because most of 

the practical problems are often found to conform to the 

states of plane stress or plane strain. In case of the 

absence of body forces, the equations governing the 

three stress components σx, σy and σxy under the states 

of plane stress or plane strain are: 
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Substitution of the stress components in Eq.(1-3) by 

their relations with the displacement components u and 

v make Eq.(3) redundant and transform Eq.(1) and (2) 

to 
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The problem thus reduces to finding u and v in a two 

dimensional field satisfying the two elliptic partial 

differential Eq.(4) and (5). Further the problem is 

reduced to the determination of a single function ψ 

instead of two functions u and v, simultaneously, 

satisfying the equilibrium Eq.(4) and (5) [9-10]. In this 

formulation, as in the case of Airy‟s stress function φ 

[7], a potential function ψ(x,y) is defined in terms of 

displacement components as  
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When the displacement components in the Eq.(4) and 

(5) are substituted by Eq.(6) and (7), Eq.(4) is 

automatically satisfied and the condition that ψ has to 

satisfy becomes 
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Therefore, the problem is now formulated in such a 

fashion that a single function ψ has to be evaluated from 

bi-harmonic Eq.(8), satisfying the boundary conditions 

specified at the boundary. 

 

2.1 General Boundary Condition 

The boundary conditions at any point on an arbitrary 

shaped boundary are known in terms of the normal and 
tangential components of displacement, un and ut and of 

stress σn and σt. These four components are expressed in 

terms of u, v, σx, σy, σxy, the components of 

displacement and stress with respect to the reference 

axes x and y of the body as follows: 

𝑢𝑛 =  𝑢. 𝑙 + 𝑣. 𝑚                                                          (9) 

𝑢𝑡 =  𝑣. 𝑙 − 𝑢. 𝑚                                                        (10) 

𝜎𝑛 =  𝜎𝑥 . 𝑙2 + 𝜎𝑦 . 𝑚2 + 2𝜎𝑥𝑦 . 𝑙. 𝑚                           (11) 

𝜎𝑡 =  𝜎𝑥𝑦 .  𝑙2 − 𝑚2 + (𝜎𝑦 − 𝜎𝑥). 𝑙 𝑚                     (12) 

The boundary conditions at any point on the boundary 

are specified in terms of any two known values of un, ut, 

σn and σt. In order to solve the mixed boundary-value 

problems of irregular-shaped bodies using present 

formulation, the boundary conditions are required to be 

expressed in terms of ψ. This can be done substituting 

the following expressions of the components of 

displacement and stress into Eq.(9) to (12). 
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σy,xy=0 

v,xy=

0 
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It is evident from the expressions of boundary 

conditions Eq.(9) to (12) that no matter what 

combinations of two conditions are specified on the 

boundary, the whole range of conditions that ψ has to 

satisfy Eq.(8) within the body and any two of the Eq.(9) 

to (12) at points on the boundary can be expressed as 

finite difference equations in terms of ψ(x,y). 

 

2.2 Model Problem and its Boundary Conditions 

A model problem chosen for this study is shown in Fig. 

1. It is simple plate with an embedded crack at center of 

the plate. The length a/b=1, while crack length is one 

fourth of „a‟ or „b‟. The boundary conditions are 

expressed in terms of stresses and displacement in 

normal and tangential directions. The problem treated 

here is, therefore, obviously a two dimensional problem 

with mixed boundary conditions. Due to the material 

and loading symmetry only right half section is taken 

for analysis. The top and bottom edge is free and thus 

obvious σx, σxy=0. At the right edge there is present a 

normal tensile stress thus σy =P=2e-4 and σxy=0. And at 

the left edge, σxy=0 and v=0 except crack position where 

σy =0 and σxy=0. Here, the stress components are 

normalized by the young modulus, E (e.g. σy=σo/E). For 

this problem the Poisson‟s ratio is taken as μ=0.3. 

 

 

 

 

 

 

 

 

 
a) Physical problem. 

 

 

 

 

 

 

 

 

 

 

b) Right half section with boundary conditions. 

Fig.1 Physical geometry of the elastic problem and its 

boundary conditions. 

 

3. Solution of the Problem 

For the solution of the problem, a two dimensional mesh 

is generated based on rectangular coordinate system. 

The function ψ from the governing Eq.(8) is evaluated 

at various mesh points inside the body using central 

difference formula. The function ψ from the boundary 

conditions is evaluated in the same manner by forward 

and backward difference formula at the boundary points 

depending on the physical boundary. A FORTRAN 

code has been developed to investigate various aspect of 

the problem. The full procedure of the management of 

boundary conditions has already been discussed in the 

papers [17-18]. But that procedure gives better result 

when the meshes are discretized base on uniform grid 

throughout the domain. Under AMR technique, for this 

particular problem the domain is discretized as follows 

[fig.2]. Uder classical FDM there is only one sizes mesh of 

length h1 and k1 in direction x- and y- respectively, whereas, 

the AMR technique has three different size of mesh. The 

high resolution of meshes under AMR technique is taken in 

the vicinity of the crack. Here, in this thesis the 

discretization is done by such a way that both methods 

have almost equal no. of nodal points. To satisfy governing 

equation and boundary condition over the whole field, 

some new stencils of governing equation and boundary 

conditions have been developed. The details of 

applications procedure of these stencils is given in [15]. 

 

 

 
 

a) Discretization under Classical FDM. 

 
 

b) Discretization under AMR technique. 

Fig.2 Discertization of the domain under classical FDM 

and AMR technique. 
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4. Results and Discussions 

Following the procedure stated above and taking mesh 

size 0.0167 unit for classical FDM and for AMR that is 

taken as 0.0083 for smallest mesh, 0.0167 for medium 

mesh and 0.033 for largest mesh [fig.2], results are 

obtained by both classical FDM and AMR technique of 

half section of the problem. In fig.3 displacement in x-

direction is shown for two section namely y/b=0.0 and 

1.00, and it shows that displacement obtained by both 

methods is same. But at the tip of the crack, the AMR 

technique gives better results than classical FDM due to 

high resolution. In fig.3 displacement in y-direction is 

shown for two sections and shows that results are 

almost same, although, AMR shows a smaller value 

than classical FDM. But the deviation is not very much 

significant. From this study, it can be concluded that the 

AMR technique has no improvement of results over 

classical FDM in terms of displacement of the model. 
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Fig.3 Comparison of the results for normalized 

displacement (U/a) obtained by mesh refinement (MR) 

technique and uniform mesh (UM) technique with 

almost equal no. of nodal points. 
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Fig.4 Comparison of the results for normalized 

displacement (V/b) obtained by MR technique and UM 

technique with almost same no. of nodal points. 

 

The most significant component of stresses of this 

problem is stress in y-direction i.e. σy, which is shown 

in fig.5. From this graph it is seen that for almost equal 

no. of nodal points the AMR technique gives a higher 

value of σy than classical FDM. A validation of these 

results can be shown as follows. Analytical solution of 

this considered problem is given in literature [19]. 

Consider a mode I crack of length 2a in the infinite 

plate of Fig.6. By using complex stress functions, it has 

been shown that the stress field on a dx dy element in 

the vicinity of the crack tip is given by 

 
This equation tells that at the tip of the crack i.e. at r=0 

and =0 the value of stress should be infinite. But for 

our case, it is seen that [fig.5] the stress is finite value 

and in classical method, it is only 2.25 times of applied 

stress (σy/E= 2e-4) and in AMR technique, it is 3.5 times 

of the applied stress. An explanation of this 

phenomenon can be given as, in FDM method; it is 

never possible to take a node at the tip of the crack, 

because one always stays behind the tip of the crack by 

a distance of half mesh length. By taking r=0.5* mesh 

length and =0 from eq.18, it is found that the stress 

value should be 3.74 times of the applied stress and this 

is very close to the results of AMR technique. So it is 

verified that AMR technique is better than classical 

FDM for the solution of problems which required 

different level of resolution at different region of the 

problem. The comparison of results for σy at other 

section of the plate is shown in fig.7 and it is seen that, 

at other section results is almost same in both methods. 

The comparison of stress component in x-direction is 

shown in fig.8 and it is seen that in AMR technique 

results is higher than that of classical FDM. 


y
/E x10
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x
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MR 
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Fig.5 Comparison of the results for normalized normal 

stress (σy/E) obtained by MR technique and UM 

technique with almost equal no. of nodal points. 

y/b=0.0 

y/b=1.0 

y/b=0.0 y/b=1.0 

(18) 
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Fig.6 Plate with embedded crack under uniform tension. 
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Fig.7 Comparison of the results for normalized normal 

stress (σy/E) obtained by MR technique and UM 

technique at different section of plate. 
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Fig.8 Comparison of the results for normalized normal 

stress (σx/E) obtained by MR technique and UM 

technique with almost equal no. of nodal points. 

 

 

5. Conclusions 

The adaptive mesh refinement technique, for the 

problem which need different resolution at different 

region of the domain, described here in this paper is 

already proven to be advantageous over conventional 

finer mesh generation technique of the finite difference 

method. Redistribution of nodes in AMR technique 

improves the accuracy of the solutions near stress 

concentration zone. The AMR technique requires a 

lesser amount of computational memory due to lesser 

number of unknown parameters. Thus the AMR 

technique could be a strongest weapon to solve problem 

which cannot be solved by uniform mesh generation 

technique due to memory shortage of computational 

resources. 

 

NOMENCLATURE 

E 

µ 

ψ 

σx 

σy 

σxy 

σn 

σt 

u 

v 
l, m 

 

un 

ut 

: Modulus of Elasticity, GPa 

: Poisson ratio 

: Displacement potential function 

: Normal stress component along x-direction 

: Normal stress component along y-direction 

: Shear stress component in the xy plane 

: Stress component normal to boundary 

: Stress component tangential to boundary 

: Displacement component along x-direction 

: Displacement component along y-direction 

: Direction cosine of the normal at any physical 

boundary point 

: Displacement component normal to boundary 

: Displacement component tangential to boundary 
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