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ABSTRACT 

In this research, heat transfer efficiency of nanofluids, through natural convection, inside a sealed wavy cavity has been 

examined numerically. Copper has been used as nanoparticles for primary investigation, with water as the base fluid. The 
governing Navier-Stokes and energy equations have been transformed into Cartesian curvilinear coordinates and then 

solved numerically using the finite volume method imposing several boundary conditions. Numerical code written in 

FORTRAN programming language is used to simulate the dimensionless, discretized governing equations. The study has 

been conducted for a range of Rayleigh numbers (103 < Ra < 106) and different volume fractions (0 < ϕ < 0.2). The code is 

validated with previous published results and found to be in good agreement. The obtained results are illustrated in terms of 

the isotherms, streamlines, velocity and temperature profiles as well as the rate of heat transfer. It is observed that volume 

fraction of nanoparticles and the Rayleigh number affect the flow and heat transfer characteristics of nanofluids within the 

cavity.   
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1. Introduction  

Heat transfer characteristics have been a major concern 
in the scientific world and have been the focus of many 

scientific researches because many devices and 

equipments starting from major industrial machines to 

the computers at home require cooling. For most of 

those equipments, like a flat-plate solar collector or a 

solar thermal collector, the performance improves with 

the increase in heat transfer efficiency. The 

conventional heat transfer materials like water, air, 
ethylene glycol, engine oil and so on were used as 

coolants but they have their limitations. The lower heat 

transfer performances of these conventional fluids 

obstruct the performance enhancement and compactness 

of heat exchangers. So the concept of nanofluid 

emerged which was first coined by Choi [1], a pioneer 

in this field. 

Nanofluids are dispersion of nanometer sized 
particles (nanoparticles) in the conventional base fluids 

mentioned above. Nanoparticles can be metallic and 

non-metallic and may contain aluminum, copper, 

titanium etc. These suspensions of nanoparticles in base 

fluids have been reported to have increased the heat 

transfer characteristics of the fluids and thus enhance 

the efficiency of the system. This increase in heat 

transfer is mainly due to high thermal conductivity of 
the nanoparticles. Xuan and Li [2] conducted theoretical 

study to find that the heat transfer increases with the 

introduction of nanoparticles. Minsta et al. [3] and Pang 

et al. [4] also showed the enhancement of thermal 

conductivity of nanofluids in their research. Many 

studies and research works have been done on 

nanofluids to understand their characteristics properly. 

There were numerical and experimental works on 

nanofluids with various geometries such as, square 
cavity (Esmaeil [5]), triangular cavity (Yu et al. [6]), 

pipe (Abouali et al. [7]), inclined angle (Oztop [8]) and 

so on, and with various governing parameters (Rayleigh 
number, volume fraction, Grashof number, etc).  

The literature reviewed reveals that many efforts 

were given to understand the characteristic of the 

nanofluids. Many studies were done with square cavity. 

Khanafer et al. [9] was one of the first to use nanofluids 

inside the cavity and his work was extended by Violi et 

al. [10] for square cavity. As the literature review 

suggests, there were also some works on square cavity 
with wavy wall, like Abu Nada et al. [11], Farhadi et al. 

[12], Mansour et al. [13] and Sonam singh et al. [14]. 

These papers studied the different parameters of 

nanofluids in different geometries of wavy wall cavity 

to understand their effects. However, to the best 

knowledge so far, none of them did any study on natural 

convection flow with left wall heated wavy and  right 

wall cold wavy and top and bottom adiabatic flat.  
So the main aim of this study is to investigate the effects 

of vertical wavy walls, heated from the left, on the flow 

of the nanofluids and the effects on the heat transfer 

characteristics of the nanofluids. This study intends to 

draw a qualitative comparison, based on the simulation 

findings, between flat and wavy walls. A mathematical 

model has been developed, based on which the 

simulations are done and the results are discussed. 

 

2. Mathematical modeling 

A two-dimensional (2D) rectangular cavity of height H 

and width L is considered for the present study. The top 

and bottom wall is entirely adiabatic. No-slip and no 

penetration assumptions were imposed on the walls. The 

entire left sidewall is hot and the right sidewall is cool 

(see Fig. 1.). Considering this cavity contains nanofluid, 
which is Newtonian, incompressible laminar, to 
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investigate the flow and thermal behavior when left 

wavy wall is heated under several conditions. 

 

 
 

Fig. 1: Schematic for the physical model 

    
 

The governing Navier-Stokes and energy equations for 

the present study taking into the account the Boussinesq 
approximation can be written as: 
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The boundary conditions for the present investigation 

are presented as: 

 

Left wall: at x = 0, 0 ≤ y ≤ 1: T =1, u = v = 0 

 

Right wall: at x = 1, 0 ≤ y ≤ 1: T = 0, u = v = 0 
 

Top wall: at y = 1, 0 ≤ x ≤ 1: 
0





y

T
 
, u = v = 0 

 Bottom wall: at y = 0, 0 ≤ x ≤ 1: 
0





y

T
 
, u = v = 0 

It is important that the terms in our equation are in a 

form that is independent of the dimensions of the 

geometry and hence is feasible for comparison. So the 

governing equations are non-dimensionalized using the 

following dimensionless parameters. 
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Here, the effective viscosity for a suspension containing 

small spherical solid nanoparticles is given as
nf and 

the effective density of a fluid containing solid 

nanoparticles is given by
nf . 

The dimensionless governing equations is of the 

following form, 
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3. Numerical method and validation 

The governing equations (6)-(9) were transformed to 

curvilinear coordinates  
2

,
11
 xx and 

 
212

, xy  so that complex geometry can be 

handled. The determinant of the Jacobian matrix, J, is 
defined as : 
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The final transformed equation into curvilinear coordinate are: 

Continuity Equation: 
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Momentum equation: 
U-momentum 
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Internal energy equation: 
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The transformed equations (11-14) were discretized 

using finite volume method. The discretized governing 

equations were used for simulation in code written in 

FORTRAN programming language. 

The present code was tested for grid independence 

using three different grid arrangements: 8181, 

101101 and 121121. Temperature profiles are plotted 
at mid section of cavity for Ra=105, ϕ =10% and Pr =6.2, 
as illustrated by Figure 2. It is observed that the shape of 

the curve changes consistently for all three grid sizes, 

which shows that grid independence, has been 

established.  

Moreover the numerical codes were validated with the 

benchmark results of de Vahl Davis [15], as shown by 

table 1 and were found to be in good agreement. 
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Fig.2 Temperature profiles at mid section of cavity for 

different grid combinations 

 

Table1 Validation of present study with benchmark 

results of Davis [15] in terms of the average Nusselt 

number 
avg

Nu  for the pure fluid 

Ra 104
 105

 106
 

Present 2.45 4.49 8.78 

Davis [15] 2.24 4.52 8.80 

 

 

4. Results and Discussion 

In this section, numerical results for the streamlines and 

isotherms contours as well as temperature, velocity and 

local Nusselt number profiles have been presented 

graphically that demonstrate the effects of the 

controlling parameters namely solid volume fraction    
(0 ≤ ϕ ≤ 0.2) and the Rayleigh number (104 ≤ Ra ≤ 106).  

 

4.1 Isotherms and streamlines 

Fig. 3 illustrates comparison of the isotherms (on the 

left) and streamlines (on the right) between nanofluid (ϕ 

= 0.2) and pure fluid (ϕ = 0) for Rayleigh numbers 104 

to 106. As seen in the diagrams (Fig. 3), for low 

Rayleigh numbers (Ra =104), the isotherms are 
distributed approximately parallel to the vertical wavy 

walls. As Rayleigh number increases, the isotherms 

become horizontal at the central region of the cavity and 

vertical at the thin boundary layers. This behavior 

occurs because at a low Ra value, the heat transfer is 

only due to conduction between the hot and the cold 

walls. However, with increase in Ra, the heat transfer is 

done by convection rather than conduction due to 
increased buoyancy. It is also observed that the left and 

right wavy walls affect the shape of the isotherms and 

streamlines.   

As illustrated in the Fig. 3, at Ra=104, an oval 

shaped cell is formed in the clockwise direction with 

ψmin = -0.0154747 for pure fluid and ψmin = -0.00860596 
for nanofluid (ϕ = 0.2). As Rayleigh number increases, 

the length of central vortex increases and the 

streamlines elongate parallel to the horizontal walls for 

both pure and nanofluids. At Ra =106, ψmin = -1.88113 

for pure fluid and ψmin = -1.05468 for nanofluid. This 
shows that absolute value of stream function increases 
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with Rayleigh number but decreases with particle 

volume fraction. Moreover, it is observed that at Ra 

=106, the central vortex of the pure fluid occupies a 

larger area than that of nanofluid. The central streamline 

contour of nanofluid becomes divided into two distinct 

vortices, whereas the central vortex for pure fluid does 

not break up. Similar results were obtained by Khanafer 

et al. [9] for the flat square cavity, which attributed this 
behavior to the dispersion effect. It is clearly observed 

that as Rayleigh number increases, boundary layers 

become thinner and denser causing steeper velocity and 

temperature gradients near the boundary. With higher 

Rayleigh number, the streamline gradient increases, 

representing an increase in velocity and an enhancement 

of the absolute circulation strength of the fluid flow.  
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Fig.3 Comparison between nanofluid (-) (ϕ = 0.2) and 

pure fluid (- - -) (ϕ = 0) for isotherms at Rayleigh 

Numbers (a) 104 (b) 105 (c) 106 and for streamlines at 
Rayleigh numbers (d) 104 (e) 105 (f) 106 

 

4.2 Vertical and horizontal velocity profiles 

To demonstrate the effects of Rayleigh number and 

volume fraction on fluid flow, velocity profiles are 

plotted at mid planes of the wavy enclosure. The Figs.4 

(a)-(b) show that the velocity profiles undergo a 

parabolic variation near the adiabatic and isothermal 
walls respectively. In addition, the velocities at the 

center of the enclosure and at the walls are almost zero 

compared to those at the boundaries near the walls, 

where fluid flow occurs at higher velocities. 
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Fig.4 Comparison of vertical velocity profiles for 

nanofluid (-) and pure fluid (- - -) at mid section of 
cavity for different Rayleigh numbers.  
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Fig.5 Comparison of vertical and horizontal velocity 

profiles for nanofluid (-) and pure fluid (- - -) at mid 

section of cavity for different volume fraction and at 
Ra= 105.  

 

This is due to the fact that no-slip and no penetration 

assumptions are imposed on the walls. From Fig. 5, it is 

observed that for ϕ= 0, the maximum stream function 

value is obtained as ψmax = 5.09334 at Ra =104. When 

solid volume fraction is increased to ϕ = 0.05, the 

maximum value of stream function decreases to ψmax = 
4.48676. Similar trend is also found for Ra =105 and Ra 

=106. This shows that the absolute magnitudes of both 

vertical and horizontal velocities decrease with 

increasing volume fraction. This is because increase in 

volume fraction causes decrease in intensity of 

buoyancy and thereby reduces fluid flow intensity. 

Similar results were found in many previous studies 

(Mansour et al. [13]) with various geometries and 
conditions. 

 

4.3 Nusselt number  

From Table 2, it is evident that the average Nusselt 

number Nuavg increases with increase in Rayleigh 

number and volume fraction. This observation is in 

agreement with other research works (Khanafer et al. 

[9], Abu-Nada et al. [10], and Violi et al. [11]). As 
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volume fraction of nanoparticles increases, the 

divergence in average Nusselt number becomes greater 

especially for higher Rayleigh numbers due to 

predominant effects of convective heat transfer. Use of 

nanoparticles in fluid increases the Nu number by about 

34% for Ra =105 and 35% for Ra =106 at ϕ = 0.2 

compared to pure fluid. The results indicate that with 

increase in particle concentration, thermal conductivity 
in fluid improves, thereby causing an enhancement in 

mean Nu number (heat transfer performance). 

 

Table 2 Variation of Average Nusselt number for 

different values of volume fraction and Rayleigh 

numbers. 

Nuavg Ra= 104 Ra=105 Ra= 106 

ϕ = 0% 1.7731 3.7182 7.3324 

ϕ = 5% 2.0498 4.2925 8.4736 

ϕ = 10% 2.2885 5.3791 9.5124 

ϕ = 20% 2.6769 5.6643 11.327 
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Fig.6 Variation of local Nusselt number with Rayleigh 

number at ϕ = 0.2.  

 

From Fig. 6, it is observed that the lowest heat transfer 

occurs at Ra =104 and the highest heat transfer is 

observed at Ra =106. By definition, Nu number is the 

ratio of convective to conductive heat transfer. As 
described earlier, for low Rayleigh numbers, heat 

transfer within the cavity is dominated by conduction 

because viscous force is greater than buoyancy force. 
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Fig. 7 Variation of local Nusselt number with volume 

fraction at Ra=105. 

Hence the value of Nu is lower and variation is less for 

Ra =104. As Ra increases, a stronger buoyancy effect is 

induced and greater thermal energy transfer occurs, 

causing an increase in Nu. Moreover, Fig. 7 illustrates 

that the use of nanoparticles gives rise to higher Nu 
compared to pure fluid for the same Ra, indicating 

improvement of heat transfer with increase in volume 

fraction. 

 

4.4 Comparison between different nanoparticles 

Fig. 8 demonstrates variation of local Nusselt number 

for three different nanoparticles- Cu, Al2O3 and TiO3. It 

is clearly observed that the highest heat transfer occurs 
for Cu and the lowest for TiO3. This is because TiO3 has 

the lowest thermal conductivity (Ks) compared to Cu 

and Al2O3. Hence the results reinforce that in 

comparison to the other two nanoparticles, Cu is more 

feasible due to higher enhancements of heat transfer. 
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Fig.8 Variation of local Nusselt number for different 

nanoparticles at Ra = 105 and ϕ = 0.2.  

 
4.5 Comparison between flat and wavy surface heating 

Fig. 9 shows that the shape of local Nu profile is 

strongly dependant on the geometry of the enclosure. 
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Fig. 9 Variation of local Nusselt number for wavy and 

flat surface heating 
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Table 3 Percentage difference of average Nuavg for flat 

and wavy surface heating 

 Wavy Flat % difference  

Nuavg 5.6643 7.2743 22.132 

 

  In case of the wavy surface, the local Nusselt 

number value changes continuously depending on the 

shape of the heated surface. Table 3 reveals one 
important finding that the average Nusselt number 

decreases and is almost 22% less for a wavy wall 

compared to a flat surface. This is because, a cavity with 

wavy walls have a larger surface area than that for flat 

walls. However, at the boundary, the local Nusselt 

number for wavy-wall shows almost 37% increase than 

the flat wall, indicating a much higher heat transfer with 

increased convection due to increased buoyancy force. 
The wavy wall of the geometry used is a sine function 

with amplitude of 0.05. Although the local Nusselt 

number for wavy wall decreases rapidly than that of flat 

wall, it has certain peak regions where heat transfer is 

more than the non-wavy surfaces. These are the regions 

where the local Nusselt numbers are higher for wavy 

surfaces. 
 
4.6 Comparison between aspect ratio A =1 and A = 0.5 
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Fig. 10 Variation of local Nusselt number with aspect 

ratio at Ra = 10
5
 and ϕ =0.2.  

    

The variation of the local Nusselt number for the two 
different aspect ratios is compared in Fig.10. The solid 

lines represents aspect ratio A =0.5 and the dotted line 

represents aspect ratio A =1. The overall pattern of the 

two graphs is similar, and in both the graphs local 

Nusselt number variation is sinusoidal. This variation is 

due to the wavy surface pattern of the left heated wall. 

However, it is evident from the graph that the highest 

heat transfer, at a particular instance, takes place with 
the aspect ratio A = 0.5 near the boundary. The 

maximum value of local Nusselt number for A = 0.5 is 

24. Whereas, the maximum value for A =1 is 17, which 

is about 29% lower than that for aspect ratio A = 0.5.  

 

5. Conclusion  

The results found show that the nanofluids exhibit much 

better heat transfer efficiency, in terms of average 

Nusselt number, than the purefluids in case of the wavy 

cavity. Similar heat transfer efficiency increment, for 

nanofluids, is also found in the literature for flat surface 

cavity. In this research work, it has been found that the 

streamline contours, temperature profiles, average 

Nusselt number and local Nusselt number are affected 
by the wavy surface of the cavity. In particular, the local 

Nusselt number varies much with the wavy surface. It is 

observed that the flow rate for both pure fluid and 

nanofluid increases with the increase in Rayleigh 

number, but the flow rate of pure fluid is higher than the 

nanofluid at all Rayleigh numbers. Also the absolute 

magnitude of both vertical and horizontal velocities 

decreases with the increase of volume fraction, from φ = 
0 to ϕ = 0.2. The heat transfer efficiency, depicted by 

Nusselt number, seems to increase with the increase in 

Rayleigh number, Ra =104 to Ra =106, for each volume 

fraction. Moreover, the Nusselt number increases with 

the increase in volume fraction. It was found that, the 

use of nanoparticles of volume fraction ϕ = 0.2, 

increases the Nusselt number by 34% for Ra =105 and 

35% for Ra =106, compared to that of pure fluids. This 
shows an increase in heat transfer efficiency for 

nanoparticles. However, if these results of wavy surface 

are compared with that of flat surface, then a decrease in 

average Nusselt number, by 22%, for the wavy surface 

is observed. Although the local Nusselt number shows 

certain places with higher heat transfer efficiency, as 

high as 37% than the flat surface, the overall heat 

transfer is assumed to have decreased for the wavy 
surface. 

Moreover, while focusing on different nanoparticles 

and the aspect ratios, it was found that Copper has the 

highest Nusselt number which is 5.66 among the three 

nanoparticles used, which in turn shows that Copper has 

the highest heat transfer rate. Change in aspect ratio also 

changes the heat transfer rate. If a nanofluid, having a 

nanoparticle of volume fraction ϕ = 0.2, is considered, 
then the value of average Nusselt number for A = 0.5 

will be 29% more than that of A =1. This shows a much 

higher heat transfer occurs for a lower aspect ratio. 

 

 

NOMENCLATURE 

A : cofactor  

Cp : specific heat ( J kg-1 K-1) 

g : gravitational accleration (m s-2) 

J : Jacobian  

Kf : fluid thermal conductivity ( W m-1K-1 ) 

Knf : nanofluid thermal conductivity ( W m-1K-1 ) 

L : reference lenght ( m ) 

Nu : Nusselt number  

Nuavg : average Nusselt number  

Pr : Prandlt number  

P : dimensionless pressure  

p : dimensional pressure ( N m-
2
 ) 

Ra     : Rayleigh number  

T : dimensional temperature (K) 
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u,v    : dimensional velocity components (m .S-1) 

U,V       : dimensionless velocity components  

x,y      : Cartesian coordinates (m)  

X,Y : dimensionless coordinates  

Greek  symboles 

Θ : non dimensional temperature (K) 

ϕ : solid volume fraction  

ψ       : streamline function, (Ψ/αf) 

β : thermal expansion coefficient, (k-1) 

βnf : nanofluid thermal expansion coefficient, (k-1) 

 : non dimensional time (T-Tc/ΔT) 

α : thermal diffusivity, (m2 s-1) 

ν : kinematic viscosity, (m2 s-1) 

μ : dynamic viscosity, (kg m-1 s-1) 

ζ1 ζ2 : dimensionless coordinates in Jacobian  

transformation 
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