
International Conference on Mechanical, Industrial and Energy Engineering 2014

 25-26 December, 2014, Khulna, BANGLADESH

* Corresponding author. Tel.: +88-01774686877

E-mail addresses: rbn_khan@yahoo.com ICMIEE-PI-140282-1

ICMIEE-PI-140282

Autonomous Robot Path Planning Using Particle Swarm Optimization in Dynamic

Environment with Mobile Obstacles & Multiple Target

Md. Rakibul Islam1*, Md. Tajmiruzzaman2, Md. Mahfuzul Haque Muftee3, Md. Sanowar Hossain4

1*, 2, 4 Department of Industrial & Production Engineering,

Rajshahi University of Engineering & Technology, Rajshahi- 6240, BANGLADESH
3 Department of Computer Science & Engineering,

Rajshahi University of Engineering & Technology, Rajshahi- 6240, BANGLADESH

ABSTRACT

Now a day, there are even demands for application of robots in homes and hospitals. The goal of this research is to plan a

trajectory and minimizing the path lengths with collisions avoidance for a mobile robot in dynamic environment. In this

paper, an intelligent approach for navigation of a mobile robot in dynamic environment with multiple targets is proposed.

Particle Swarm Optimization (PSO) method is used for finding proper solutions of optimization problems. PSO has been

demonstrated to be a useful technique in robot path planning in dynamic environment with mobile obstacles and multiple

goals, as a feasible approach for self organized control of robot to avoid obstacle throughout the trajectory. The authors

here has been used a grid based search approach for robot. The positions of the obstacles will be changed randomly.

Finally, simulation results confirm the effectiveness of our algorithm.

Key words: Robot Path Planning, Particle Swarm Optimization, Trajectory Planning, Moving Obstacles

1. Introduction

Autonomous mobile robots used in the environment

where many human beings are working, cooperating with

robots. In these environments, the collision-free path

planning is one of the major problems to realize autonom-

ous mobile robots. Since there are many stationary or

moving obstacles in these environments, autonomous
mobile robots should plan their own path that can avoid

not only stationary obstacles but also moving ones such

as human workers and other robots. The main problem in

robot path planning is to find a motion trajectory from a

starting position to a goal position regarding to some

optimization criteria. Path Planning is one of the most

vital issues in the navigation of mobile robot, which

means to find out an optimized collision free path from

the start state to the goal state according to some perfor-

mance merits. It can be classified into two categories

global path planning with all the information of the ro-

bot's known environment and local path planning in a
partly or totally unknown environment [1]. In global

navigation methods cost of environmental change, espe-

cially in dynamic environment is very high, because

supply a new map is difficult. Therefore, research on the

local navigation is necessary. These methods could be

able to detect the unknown environment, and it does not

need to environment model. In this paper, a new method

of local navigation based on particle swarm optimization

technique is proposed.

There have been many algorithms for global path

planning, such as artificial potential field, visibility graph,
and cell decomposition etc. PSO is a heuristic search

technique that is inspired by the behavior of bird flocks.

Although PSO is relatively new, the relative simplicity,

the fast convergence and the population-based feature [2]

have made it a considerable viable alternative for solving

the robot path planning problem. PSO has been used for

hazardous target search applications, such as landmine

detection, fire fighting, and military surveillance, and are

an effective technique for collective robotic search

problems.

Swarm intelligence is an emerging research area with

similar population and evolution characteristics to those

of genetic algorithms. Swarm intelligence is used to solve
optimization and cooperative problems among intelligent

agents, mainly in computer’s networks, mobile robotics

[3] and cooperative and/or decentralized control [4].

Swarm intelligence is inspired in nature, in the fact that

contribution among living animals of a group contribute

with their own experiences to the group, making it

stronger in face of others. In This method, an optimiza-

tion problem based on position of obstacles, and goal is

designed and then PSO is used to solve the optimization

problem. Every step of the algorithm, the global best

position of particle is selected and the robot moves on the

points in order to reach the goal. Whenever sensors detect
changes in their environment or whenever the robot

reaches to a local goal the local, processor of robot

updates its data.

2. A Review of Previous Research

To solve the navigation problem for the robot, researchers

have proposed various methods. In conventional naviga-

tion methods such as cell decomposition (Latombe, 1990)

[5] and road map (Wang. 2000) [6], due to the high vo-
lume of calculations, we are not able to solve problems in

complex environments. Artificial potential field method

(Shi, 2009) [7], because of simplification frequently is

used for local navigation. But due to stop at local minima,

this method will fail. In recent years a series of intelligent

ideas, such as genetic algorithms and particle swarm

optimization because of the robust and ability to the

Simultaneous calculations to solve the navigation

International Conference on Mechanical, Industrial and Energy Engineering 2014

 25-26 December, 2014, Khulna, BANGLADESH

 ICMIEE-PI-140282-2

problems are used. Ghorbani and colleagues (Ghorbani,

2009) [8], use the genetic algorithm for solving the

problem of mobile robot navigation. Sugiwara and

colleagues, (Sugawara, 2004) [9], used ants colony algo-

rithm to solve the problem of navigation in a dynamic

virtual environment. Qu and colleagues, (Qu, 2009) [10]
used neural networks for navigation and obstacles avoid

in dynamic environments. PSO, by Kennedy in 1995,

based on observation of the collective behavior of certain

species of animals such as birds and fish have been pro-

posed (Eberhart, 1995& Kennedy, 1995) [11]. Due to

simplicity, this method is used in robot navigation.

Doctor and colleagues (Doctor, 2004) [12], using the

PSO method for navigation an unmanned vehicle that can

converge well. Chen and colleagues, (Chen, 2006) [13],

suggests a soft and efficient navigation method for mo-

bile robot using the Stochastic PSO. Qin and colleagues
(Qin, 2004) [14] used the Chaotic PSO with Mutation

operator for navigation and moving the robot meets the

immediate needs. Hao and colleagues, (Hao, 2007) [15]

proposed a method of obstacles avoiding using the PSO

and polar coordinate system in a dynamic environment.

3. Particle Swarm Optimization
The proposal of such algorithm appeared from some

scientists that developed computational simulations of the
movement of organisms such as flocks of birds and fish

schooling. Such simulations were heavily based in

manipulating the distances between individuals, that is,

the synchrony of the behavior of the swarm was thought

as an effort to keep an optimal distance between them.

In theory, at least, individuals of a swarm may benefit

from the prior discoveries and experiences of all member

of the swarm when foraging. The fundamentals of

developing particle swarm optimization (PSO) are a

hypothesis in which the exchange of information among

beings of a same species offers some sort of evolutionary
advantage.

Similarly to genetic algorithms (GAs), PSO is an

optimization tool based in a population, where each

member is called a particle, that is, each particle is a

potential solution to the analyzed problem. However,

unlike GAs, PSO does not have operators, like crossover

and mutation. PSO does not implement the survival of the

fittest individuals; instead, it implements the simulation

of social behavior.

The PSO algorithm works as follows, initially, a random

position population exists, each of these particles has a

speed and the particles start to “fly around” the search
space. Each particle has a memory, allowing it to

remember the best position it has visited in history (pbest),

and also the fitness in that position.

The best position ever achieved by the whole swarm is

denominated the global best (gbest). The basic concept

of PSO algorithm is to accelerate the particles towards

pbest and gbest, considering a random weight at each

time step. Mathematically, the particles move following

the equations:

𝑉𝑖𝑑
𝑡+1 = 𝑊 × 𝑉𝑖𝑑𝑡 + 𝑐1 × 𝑟𝑎𝑛𝑑1 × 𝑃𝑖𝑑 −𝑋𝑖𝑑

𝑡 + 𝑐2 ×
𝑟𝑎𝑛𝑑2 × (𝑃𝑔𝑑𝑖𝑑 −𝑋𝑖𝑑

𝑡) (1)

𝑋𝑖𝑑
𝑡+1 = 𝑋𝑖𝑑

𝑡 + 𝑉𝑖𝑑
𝑡+1∆𝑡 (2)

Where 𝛥𝑡 = 1, 𝑡 represents the actual iteration and 𝑡 + 1

represents the next iteration 𝑉𝑖𝑑 and 𝑋𝑖𝑑 represent the

particle speed and position respectively, 𝑟𝑎𝑛𝑑1 and

𝑟𝑎𝑛𝑑2 are two random numbers with uniform

distribution in [0,1], used to maintain populations’

diversity.

Eq. (1) is used to update each particle’s speed, and Eq. (2)

represents the position update, according to its previous

position and its speed, considering 𝛥𝑡 = 1.

Positive constants 𝑐1 and 𝑐2 are denominated cognitive

and social components, respectively. These are the
acceleration constants, responsible for varying the

particle speed towards pbest and gbest. Constants 𝑐1 and

𝑐2 are not critical factors for determining the algorithm

convergence; however, a correct tuning may cause the

algorithm convergence to occur faster.

The use of 𝑊, called inertia weight was proposed by Shi

and Eberhart (1998) [16]. This parameter is responsible

for dynamically adjust the speed of the particles, so, it’s

responsible for balancing between local and global search,

consequently, needing less iterations for the algorithm to
converge. A small value of inertia weight implies in a

local search, by the other side, a high value leads to a

global search.

Applying a high inertia weight at the start of the

algorithm and making it decay to a low value through the

PSO algorithm execution, makes the algorithm globally

search in the start of the search, and search locally at the

end of the execution. Eq. (3) shows how the inertia

weight is updated, considering 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 the maximum

number of iterations of the algorithm and 𝑖𝑡𝑒𝑟 the actual
iteration.

𝑊 = 𝑊𝑚𝑎𝑥 −
𝑊𝑚𝑎𝑥 −𝑊𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
× 𝑖𝑡𝑒𝑟 (3)

The first step of the PSO algorithm is to start each

particle with random numbers, considering that the

random number must belong to the search space. Next a

loop starts being executed, and it remains until the
stopping criteria is met, the stopping criteria may be the

convergence of the algorithm, a maximum number of

iterations, or anything else. Inside the loop the value of

the fitness and the pbest of each particle are determined.

Once all particles have been analyzed, it’s calculated the

gbest, and with this value, the velocity and position of all

particles is achieved.

4. Trajectory Planning
The position of the robot is represented by Cartesian co-

ordinates such as x- and y-coordinate positions and its

velocity is modified by PSO.

As the particles initiated moves through the search space

for finding the next optimum position for the robot to

move, the positions lying inside any obstacle should be

discarded and the path, generated after choosing the next

position, should not collide with any obstacle.

4.1 Objective function

International Conference on Mechanical, Industrial and Energy Engineering 2014

 25-26 December, 2014, Khulna, BANGLADESH

 ICMIEE-PI-140282-3

The path-planning, in this study, is nothing but a

constrained optimization where the obstacles represent

constraints and the length of path has to be optimized

(minimized) i.e. the Euclidean distance from current

position to the goal is the objective function.

The positions which give the minimum value of the
objective function i.e. the positions nearest to the goal

point must be selected for the next move of the robot in

every iteration of the algorithm.

In this study, we have used a simple objective function

𝐹 = 𝑥𝑖 − 𝑥𝑔
2

+ 𝑦𝑖 − 𝑦𝑔
2
; 𝑖 = 1, 2, 3, …… , 𝑁 (4)

Where, N is number of particles. (xi, yi) is current

position of i-th particle and (xg, yg) is co-ordinate of goal

point.

4.2 Proposed Approach
The overall steps of the algorithm are as follows:

Step 1: A preset number of particles are generated

around the robot’s initial position and within its

sensing range.

Step 2: Each particle takes a new velocity and position

based on the constantly updated PSO equations.

Step 3: All the particles are checked if the lines

connecting the new positions of the particles to

the robot’s current position intersect any

obstacle; if any particle intersects, then the

particle is relocated to another new position.

Step 4: A candidate for the robot’s next position is
determined by the position of the best particle

(i.e., the one nearest to the goal). Set it as the

robot’s next position and go to Step 2.

Step 5: Execute Steps 2–4 until the goal is within the

robot’s sensing range and can be accessed via a

straight line.

Fig.1 Obstacles avoidance and path generation

We have used relocation method instead of penalty

method for obstacle avoidance, because in penalty

method, some particles will be lost but in relocation

method, particles’ positions are relocated, so no particles

are lost.

The algorithm part for relocation of particles’ positions is:

for i =1 to M, M is no. of obstacles do

 for j=1 to N, N is no. of particles do

 Find I, I is matrix of intersection points of

 obstacle and line connecting the new position

 of the particle to the robot’s current position.

 while (I ~= empty) do

 Find new position of the particle

 for k=1 to M do

 Find I

 if(I==empty)
 Break

 end if

 end for k

 end while

 end for j

end for i

5. Simulation

5.1 Settings and environment

All the experiments are executed in a Fujitsu LH531

computer and the configuration of PC was Intel(R)

Pentium(R) CPU B960 @ 2.20 GHz and 2 GB RAM.

The environment used for the trajectory planning is a

20x20 meters field. And as we have mentioned earlier,

we have used a grid based environment, where robots can

choose only integer-valued co-ordinates for the candidate

points of trajectory. As for creating a dynamic
environment, once we have assigned some positions to

the obstacles initially before starting iterations, the

obstacles move randomly in a range of (-1,1) for both x

and y co-ordinates in each iteration. The PSO parameters

are: maximum number of iterations 100, maximum

inertia weight 0.9 and minimum inertia weight 0.4 and c1

= c2 = 2.

5.2 Simulation result

The MATLAB simulation results of our research work

for autonomous robot path planning in dynamic and static

environment is summarized in table 1 for different

combinations.

Table 1 Simulation results for the proposed algorithm

These results for different combinations are also shown in

different figures below. The figure 1 through figure 3 has

O
b
st

ac
le

N
o
.

S
ta

ti
c

O
b
st

ac
le

s

D
y
n
am

ic

O
b
st

ac
le

s

S
w

ar
m

N
o
.

T
ar

g
et

 N
o
.

P
at

h

L
en

g
th

T
im

e
(S

)

4 4 0 30 1 26.24 2.57

8 8 0 35 1 28.64 4.71

12 12 0 40 1 27.69 4.82

12 8 4 50 1 30.56 6.45

12 0 12 50 1 32.35 6.70

12 0 12 50 2 43.26 6.9

International Conference on Mechanical, Industrial and Energy Engineering 2014

 25-26 December, 2014, Khulna, BANGLADESH

 ICMIEE-PI-140282-4

been shown for static environment. The figure 4a and 4b

is for partly dynamic and partly static environment and

the figure 5a through figure 5d is used to show the fully

dynamic environment. These upper-mentioned cases are

for single goal. Finally, the figure 6 is used to show for

the case of multiple goals as two goals.

Fig.2 Path generated for the working environment using

PSO (Static obstacles = 4; Dynamic obstacles = 0; Swarm

size = 30; Goal = 1)

Fig.3 Path generated for the working environment using

PSO (Static obstacles = 8; Dynamic obstacles = 0; Swarm

size = 35; Goal = 1)

Fig.4 Path generated for the working environment using

PSO (Static obstacles = 12; Dynamic obstacles = 0;
Swarm size = 40; Goal = 1)

Fig.5a (Starting) Path generated for the working

environment using PSO (Static obstacles = 8; Dynamic

obstacles = 4; Swarm size = 50; Goal = 1)

Fig.5b (End) Path generated for the working environment

using PSO (Static obstacles = 8; Dynamic obstacles = 4;

Swarm size = 50; Goal = 1)

International Conference on Mechanical, Industrial and Energy Engineering 2014

 25-26 December, 2014, Khulna, BANGLADESH

 ICMIEE-PI-140282-5

Fig.6a (Starting) Path generated for the working

environment using PSO (Static obstacles = 12; Dynamic
obstacles = 0; Swarm size = 50; Goal = 1)

Fig.6b (Middle) Path generated for the working

environment using PSO (Static obstacles = 12; Dynamic

obstacles = 0; Swarm size = 50; Goal = 1)

Fig.6c (Middle) Path generated for the working

environment using PSO (Static obstacles = 12; Dynamic

obstacles = 0; Swarm size = 50; Goal = 1)

Fig.6d (End) Path generated for the working environment

using PSO (Static obstacles = 12; Dynamic obstacles = 0;
Swarm size = 50; Goal = 1)

Fig.7 Path generated for the working environment using

PSO (Static obstacles = 12; Dynamic obstacles = 0;

Swarm size = 50; Goal = 2)

6. Conclusion & Future Works

A sensor-based path planner is presented in this paper.

The proposed method is able to deal simultaneously with

both global and local planning requirements. The advan-

tages of the approach can be summarized by the fact that

the trajectories obtained are smooth and safe, and at the

same time, free of local traps due to the integration of the

real-time sensor information in the recalculation of the

path.

The method is easy to implement, the algorithm is very

fast and can work online. It works in cluttered and
changing environments with moving obstacles. As

demonstrated along this work, the method can perform in

all types of environments without restrictions in the form

of the obstacles.

Obstacles in the environment by the robot sensors, in a

limited radius around it are detected. The robot will come.

It cannot be said with certainty that the path travelled by

the robot to the global is optimum because the environ-

International Conference on Mechanical, Industrial and Energy Engineering 2014

 25-26 December, 2014, Khulna, BANGLADESH

 ICMIEE-PI-140282-6

ment is dynamic and unknown. The proposed method is

flexible, that way you can change any parameters, or

control the degree of importance of avoiding or moving

toward the goal. As future work we have the intention to

apply other types of nature inspired algorithms to the path

planning problem. We can also improve the performance
by the hybridization of various nature inspired algorithms.

7. References

[1] L. Li, T. Ye, M. Tan, and X. Chen, Present state and

future development of mobile robot technology

research, Robot, vol. 24(5), pp.475-480, (2002).

[2] M. Reyes-Sierra, and C.A. Coello, Multi-objective

particle swarm optimizers: a survey of the state-of-
the-art, Int. J. Comput. Intell. Res. 2 (3), 287–308,

(2006).

[3] Y. Liu, and K.M. Passino, Stable social foraging

swarms in a noisy environment, IEEE Transactions

on Automatic Control, vol. 49, no. 1, pp. 30-44,

(2004).

[4] J.S. Baras, X. Tan, and P. Hovareshti, Decentralized

control of autonomous vehicles, Proceedings of the

42nd IEEE Conference on Decision and Control,

Maui, Hawaii, USA, pp. 1532-1537, (2003).

[5] J. C. Latombe, Robot motion planning, Springer

Verlag, (1990).
[6] Y. Wang, Two novel approaches for unmanned

underwater vehicle path planning: constrained

optimization and semi-infinite constrained

optimization, Robotica, vol. 18, pp. 123-14, (2000).

[7] P. Shi and Y. Zhao, An efficient path planning

algorithm for mobile robot using improved potential

field, IEEE International Conference on Robotics

and Biomimetics, pp. 1704-1708, (2009).

[8] A. Ghorbani, Using Genetic Algorithm for a Mobile

Robot Path Planning, International Conference on

Future Computer and Communication, pp. 164-166,
(2009).

[9] K. Sugawara, Foraging behavior of interacting robots

with virtual pheromone, Proceedings of the

International Conference on Intelligent Robots and

Systems, pp. 3074-3079 vol. 3, (2004).

[10] H. Qu, Real-time robot path planning based on a

modified pulse-coupled neural network model,

Neural Networks, IEEE Transactions on, vol. 20, pp.

1724-1739, (2009).

[11] R. Eberhart and J. Kennedy, A new optimizer using

particle swarm theory, in Proceedings of the Sixth

International Symposium on Micro Machine and
Human Science, pp. 39-43, (1995).

[12] S. Doctor and G. Venayagamoorthy, Unmanned

vehicle navigation using swarm intelligence, in

Proceedings of International Conference on

Intelligent Sensing and Information Processing, pp.

249-253, (2004).

[13] X. Chen and Y. Li, Smooth path planning of a

mobile robot using stochastic particle swarm

optimization, in Proceedings of the IEEE

International Conference on Mechatronics and

Automation, pp. 1722-1727, (2006).

[14] Q.Y. Qin, Path planning for mobile robot using the

particle swarm optimization with mutation operator,

in Proceedings of International Conference on

Machine Learning and Cybernetics, pp. 2473-2478

vol. 4, (2004).

[15] Y. Hao, Real-Time Obstacle Avoidance Method
based on Polar Coordination Particle Swarm

Optimization in Dynamic Environment, in IEEE

Conference on Industrial Electronics and

Applications, pp. 1612-1617, (2007).

[16] Y. Shi, and R. C. Eberhart, Parameter selection in

particle swarm optimizer, Proceedings Seventh

Annual Conference on Evolutionary Programming,

V.W. Porto, N. Saravan, D. Waagen, and A.E. Eiben

(eds.). Berlin: Springer-Verlag, pp. 591-601, (1998).

