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ABSTRACT 

Now a day, there are even demands for application of robots in homes and hospitals.  The goal of this research is to plan a 

trajectory and minimizing the path lengths with collisions avoidance for a mobile robot in dynamic environment. In this 

paper, an intelligent approach for navigation of a mobile robot in dynamic environment with multiple targets is proposed. 

Particle Swarm Optimization (PSO) method is used for finding proper solutions of optimization problems. PSO has been 

demonstrated to be a useful technique in robot path planning in dynamic environment with mobile obstacles and multiple 

goals, as a feasible approach for self organized control of robot to avoid obstacle throughout the trajectory. The authors 

here has been used a grid based search approach for robot. The positions of the obstacles will be changed randomly.  

Finally, simulation results confirm the effectiveness of our algorithm. 
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1. Introduction 

Autonomous mobile robots used in the environment 

where many human beings are working, cooperating with 

robots. In these environments, the collision-free path 

planning is one of the major problems to realize autonom-

ous mobile robots. Since there are many stationary or 

moving obstacles in these environments, autonomous 
mobile robots should plan their own path that can avoid 

not only stationary obstacles but also moving ones such 

as human workers and other robots.  The main problem in 

robot path planning is to find a motion trajectory from a 

starting position to a goal position regarding to some 

optimization criteria. Path Planning is one of the most 

vital issues in the navigation of mobile robot, which 

means to find out an optimized collision free path from 

the start state to the goal state according to some perfor-

mance merits. It can be classified into two categories 

global path planning with all the information of the ro-

bot's known environment and local path planning in a 
partly or totally unknown environment [1]. In global 

navigation methods cost of environmental change, espe-

cially in dynamic environment is very high, because 

supply a new map is difficult. Therefore, research on the 

local navigation is necessary. These methods could be 

able to detect the unknown environment, and it does not 

need to environment model. In this paper, a new method 

of local navigation based on particle swarm optimization 

technique is proposed. 

There have been many algorithms for global path 

planning, such as artificial potential field, visibility graph, 
and cell decomposition etc. PSO is a heuristic search 

technique that is inspired by the behavior of bird flocks. 

Although PSO is relatively new, the relative simplicity, 

the fast convergence and the population-based feature [2] 

have made it a considerable viable alternative for solving 

the robot path planning problem. PSO has been used for 

hazardous target search applications, such as landmine 

detection, fire fighting, and military surveillance, and are 

an effective technique for collective robotic search 

problems. 

Swarm intelligence is an emerging research area with 

similar population and evolution characteristics to those 

of genetic algorithms. Swarm intelligence is used to solve 
optimization and cooperative problems among intelligent 

agents, mainly in computer’s networks, mobile robotics 

[3] and cooperative and/or decentralized control [4]. 

Swarm intelligence is inspired in nature, in the fact that 

contribution among living animals of a group contribute 

with their own experiences to the group, making it 

stronger in face of others. In This method, an optimiza-

tion problem based on position of obstacles, and goal is 

designed and then PSO is used to solve the optimization 

problem. Every step of the algorithm, the global best 

position of particle is selected and the robot moves on the 

points in order to reach the goal. Whenever sensors detect 
changes in their environment or whenever the robot 

reaches to a local goal the local, processor of robot 

updates its data.

2. A Review of Previous Research 

To solve the navigation problem for the robot, researchers 

have proposed various methods. In conventional naviga-

tion methods such as cell decomposition (Latombe, 1990) 

[5] and road map (Wang. 2000) [6], due to the high vo-
lume of calculations, we are not able to solve problems in 

complex environments. Artificial potential field method 

(Shi, 2009) [7], because of simplification frequently is 

used for local navigation. But due to stop at local minima, 

this method will fail. In recent years a series of intelligent 

ideas, such as genetic algorithms and particle swarm 

optimization because of the robust and ability to the 

Simultaneous calculations to solve the navigation 
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problems are used. Ghorbani and colleagues (Ghorbani, 

2009) [8], use the genetic algorithm for solving the 

problem of mobile robot navigation. Sugiwara and 

colleagues, (Sugawara, 2004) [9], used ants colony algo-

rithm to solve the problem of navigation in a dynamic 

virtual environment. Qu and colleagues, (Qu, 2009) [10] 
used neural networks for navigation and obstacles avoid 

in dynamic environments. PSO, by Kennedy in 1995, 

based on observation of the collective behavior of certain 

species of animals such as birds and fish have been pro-

posed (Eberhart, 1995& Kennedy, 1995) [11]. Due to 

simplicity, this method is used in robot navigation. 

Doctor and colleagues (Doctor, 2004) [12], using the 

PSO method for navigation an unmanned vehicle that can 

converge well. Chen and colleagues, (Chen, 2006) [13], 

suggests a soft and efficient navigation method for mo-

bile robot using the Stochastic PSO. Qin and colleagues 
(Qin, 2004) [14] used the Chaotic PSO with Mutation 

operator for navigation and moving the robot meets the 

immediate needs. Hao and colleagues, (Hao, 2007) [15] 

proposed a method of obstacles avoiding using the PSO 

and polar coordinate system in a dynamic environment.  

3. Particle Swarm Optimization 
The proposal of such algorithm appeared from some 

scientists that developed computational simulations of the 
movement of organisms such as flocks of birds and fish 

schooling. Such simulations were heavily based in 

manipulating the distances between individuals, that is, 

the synchrony of the behavior of the swarm was thought 

as an effort to keep an optimal distance between them.  

In theory, at least, individuals of a swarm may benefit 

from the prior discoveries and experiences of all member 

of the swarm when foraging. The fundamentals of 

developing particle swarm optimization (PSO) are a 

hypothesis in which the exchange of information among 

beings of a same species offers some sort of evolutionary 
advantage. 

Similarly to genetic algorithms (GAs), PSO is an 

optimization tool based in a population, where each 

member is called a particle, that is, each particle is a 

potential solution to the analyzed problem. However, 

unlike GAs, PSO does not have operators, like crossover 

and mutation. PSO does not implement the survival of the 

fittest individuals; instead, it implements the simulation 

of social behavior. 

The PSO algorithm works as follows, initially, a random 

position population exists, each of these particles has a 

speed and the particles start to “fly around” the search 
space. Each particle has a memory, allowing it to 

remember the best position it has visited in history (pbest), 

and also the fitness in that position. 

The best position ever achieved by the whole swarm is 

denominated the global best (gbest).  The basic concept 

of PSO algorithm is to accelerate the particles towards 

pbest and gbest, considering a random weight at each 

time step. Mathematically, the particles move following 

the equations:  

𝑉𝑖𝑑
𝑡+1 = 𝑊 × 𝑉𝑖𝑑𝑡 + 𝑐1 × 𝑟𝑎𝑛𝑑1 ×  𝑃𝑖𝑑 −𝑋𝑖𝑑

𝑡  + 𝑐2 ×
𝑟𝑎𝑛𝑑2 × (𝑃𝑔𝑑𝑖𝑑 −𝑋𝑖𝑑

𝑡 )                (1) 

𝑋𝑖𝑑
𝑡+1 = 𝑋𝑖𝑑

𝑡 + 𝑉𝑖𝑑
𝑡+1∆𝑡                (2) 

Where 𝛥𝑡 = 1, 𝑡 represents the actual iteration and 𝑡 + 1 

represents the next iteration 𝑉𝑖𝑑  and 𝑋𝑖𝑑  represent the 

particle speed and position respectively, 𝑟𝑎𝑛𝑑1  and 

𝑟𝑎𝑛𝑑2  are two random numbers with uniform 

distribution in [0,1], used to maintain populations’ 

diversity.  

Eq. (1) is used to update each particle’s speed, and Eq. (2) 

represents the position update, according to its previous 

position and its speed, considering  𝛥𝑡 = 1. 

Positive constants 𝑐1  and 𝑐2  are denominated cognitive 

and social components, respectively. These are the 
acceleration constants, responsible for varying the 

particle speed towards pbest and gbest. Constants 𝑐1 and 

𝑐2  are not critical factors for determining the algorithm 

convergence; however, a correct tuning may cause the 

algorithm convergence to occur faster. 

The use of  𝑊, called inertia weight was proposed by Shi 

and Eberhart (1998) [16]. This parameter is responsible 

for dynamically adjust the speed of the particles, so, it’s 

responsible for balancing between local and global search, 

consequently, needing less iterations for the algorithm to 
converge. A small value of inertia weight implies in a 

local search, by the other side, a high value leads to a 

global search. 

Applying a high inertia weight at the start of the 

algorithm and making it decay to a low value through the 

PSO algorithm execution, makes the algorithm globally 

search in the start of the search, and search locally at the 

end of the execution. Eq. (3) shows how the inertia 

weight is updated, considering 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  the maximum 

number of iterations of the algorithm and 𝑖𝑡𝑒𝑟  the actual 
iteration. 

𝑊 = 𝑊𝑚𝑎𝑥 −
𝑊𝑚𝑎𝑥 −𝑊𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
× 𝑖𝑡𝑒𝑟               (3) 

The first step of the PSO algorithm is to start each 

particle with random numbers, considering that the 

random number must belong to the search space. Next a 

loop starts being executed, and it remains until the 
stopping criteria is met, the stopping criteria may be the 

convergence of the algorithm, a maximum number of 

iterations, or anything else. Inside the loop the value of 

the fitness and the pbest of each particle are determined. 

Once all particles have been analyzed, it’s calculated the 

gbest, and with this value, the velocity and position of all 

particles is achieved. 

4. Trajectory Planning 
The position of the robot is represented by Cartesian co-

ordinates such as x- and y-coordinate positions and its 

velocity is modified by PSO. 

As the particles initiated moves through the search space 

for finding the next optimum position for the robot to 

move, the positions lying inside any obstacle should be 

discarded and the path, generated after choosing the next 

position, should not collide with any obstacle. 

4.1 Objective function  
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The path-planning, in this study, is nothing but a 

constrained optimization where the obstacles represent 

constraints and the length of path has to be optimized 

(minimized) i.e. the Euclidean distance from current 

position to the goal is the objective function. 

The positions which give the minimum value of the 
objective function i.e. the positions nearest to the goal 

point must be selected for the next move of the robot in 

every iteration of the algorithm.  

In this study, we have used a simple objective function 

𝐹 =   𝑥𝑖 − 𝑥𝑔 
2

+  𝑦𝑖 − 𝑦𝑔 
2
; 𝑖 = 1, 2, 3, …… , 𝑁    (4) 

Where, N is number of particles. (xi, yi) is current 

position of i-th particle and (xg, yg) is co-ordinate of goal 

point. 

4.2 Proposed Approach 
The overall steps of the algorithm are as follows:  

Step 1: A preset number of particles are generated 

around the robot’s initial position and within its 

sensing range.  

Step 2: Each particle takes a new velocity and position 

based on the constantly updated PSO equations. 

Step 3: All the particles are checked if the lines 

connecting the new positions of the particles to 

the robot’s current position intersect any 

obstacle; if any particle intersects, then the 

particle is relocated to another new position.   

Step 4: A candidate for the robot’s next position is 
determined by the position of the best particle 

(i.e., the one nearest to the goal). Set it as the 

robot’s next position and go to Step 2. 

Step 5: Execute Steps 2–4 until the goal is within the 

robot’s sensing range and can be accessed via a 

straight line. 

 

Fig.1 Obstacles avoidance and path generation 

We have used relocation method instead of penalty 

method for obstacle avoidance, because in penalty 

method, some particles will be lost but in relocation 

method, particles’ positions are relocated, so no particles 

are lost.  

The algorithm part for relocation of particles’ positions is: 

for i =1 to M, M is no. of obstacles do  

       for j=1 to N, N is no. of particles do 

             Find I, I is matrix of intersection points of      

             obstacle and line connecting the new position  

              of the particle to the robot’s current position.  

                 while ( I ~= empty) do 

                     Find new position of the particle 

                        for k=1 to M do 

                             Find I 

                             if(I==empty ) 
                               Break 

                             end if 

                      end for k 

             end while 

       end for j 

end for i  

5. Simulation 

5.1 Settings and environment 

All the experiments are executed in a Fujitsu LH531 

computer and the configuration of PC was Intel(R) 

Pentium(R) CPU B960 @ 2.20 GHz and 2 GB RAM. 

The environment used for the trajectory planning is a 

20x20 meters field. And as we have mentioned earlier, 

we have used a grid based environment, where robots can 

choose only integer-valued co-ordinates for the candidate 

points of trajectory. As for creating a dynamic 
environment, once we have assigned some positions to 

the obstacles initially before starting iterations, the 

obstacles move randomly in a range of (-1,1) for both x 

and y co-ordinates in each iteration. The PSO parameters 

are: maximum number of iterations 100, maximum 

inertia weight 0.9 and minimum inertia weight 0.4 and c1 

= c2 = 2.  

5.2 Simulation result 

The MATLAB simulation results of our research work 

for autonomous robot path planning in dynamic and static 

environment is summarized in table 1 for different 

combinations. 

Table 1 Simulation results for the proposed algorithm 

 

These results for different combinations are also shown in 

different figures below. The figure 1 through figure 3 has 
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4 4 0 30 1 26.24 2.57 

8 8 0 35 1 28.64 4.71 

12 12 0 40 1 27.69 4.82 

12 8 4 50 1 30.56 6.45 

12 0 12 50 1 32.35 6.70 

12 0 12 50 2 43.26 6.9 
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been shown for static environment. The figure 4a and 4b 

is for partly dynamic and partly static environment and 

the figure 5a through figure 5d is used to show the fully 

dynamic environment. These upper-mentioned cases are 

for single goal. Finally, the figure 6 is used to show for 

the case of multiple goals as two goals. 

 

Fig.2 Path generated for the working environment using 

PSO (Static obstacles = 4; Dynamic obstacles = 0; Swarm 

size = 30; Goal = 1) 

 

Fig.3 Path generated for the working environment using 

PSO (Static obstacles = 8; Dynamic obstacles = 0; Swarm 

size = 35; Goal = 1) 

 

Fig.4 Path generated for the working environment using 

PSO (Static obstacles = 12; Dynamic obstacles = 0; 
Swarm size = 40; Goal = 1) 

 

Fig.5a (Starting) Path generated for the working 

environment using PSO (Static obstacles = 8; Dynamic 

obstacles = 4; Swarm size = 50; Goal = 1) 

  

Fig.5b (End) Path generated for the working environment 

using PSO (Static obstacles = 8; Dynamic obstacles = 4; 

Swarm size = 50; Goal = 1) 
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Fig.6a (Starting) Path generated for the working 

environment using PSO (Static obstacles = 12; Dynamic 
obstacles = 0; Swarm size = 50; Goal = 1) 

 

Fig.6b (Middle) Path generated for the working 

environment using PSO (Static obstacles = 12; Dynamic 

obstacles = 0; Swarm size = 50; Goal = 1) 

 
Fig.6c (Middle) Path generated for the working 

environment using PSO (Static obstacles = 12; Dynamic 

obstacles = 0; Swarm size = 50; Goal = 1) 

 

Fig.6d (End) Path generated for the working environment 

using PSO (Static obstacles = 12; Dynamic obstacles = 0; 
Swarm size = 50; Goal = 1) 

 

Fig.7 Path generated for the working environment using 

PSO (Static obstacles = 12; Dynamic obstacles = 0; 

Swarm size = 50; Goal = 2) 

6. Conclusion & Future Works 

A sensor-based path planner is presented in this paper. 

The proposed method is able to deal simultaneously with 

both global and local planning requirements. The advan-

tages of the approach can be summarized by the fact that 

the trajectories obtained are smooth and safe, and at the 

same time, free of local traps due to the integration of the 

real-time sensor information in the recalculation of the 

path. 

The method is easy to implement, the algorithm is very 

fast and can work online. It works in cluttered and 
changing environments with moving obstacles. As 

demonstrated along this work, the method can perform in 

all types of environments without restrictions in the form 

of the obstacles.  

Obstacles in the environment by the robot sensors, in a 

limited radius around it are detected. The robot will come. 

It cannot be said with certainty that the path travelled by 

the robot to the global is optimum because the environ-
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ment is dynamic and unknown. The proposed method is 

flexible, that way you can change any parameters, or 

control the degree of importance of avoiding or moving 

toward the goal. As future work we have the intention to 

apply other types of nature inspired algorithms to the path 

planning problem. We can also improve the performance 
by the hybridization of various nature inspired algorithms.  
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