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ABSTRACT 

Bi-layer composites, such as metal-metal, steel-polymer, concrete-steel etc., having different mechanical properties 

layer by layer are widely used for modern structures. This paper deals with the stress analysis of two bonded isotropic 
materials called bi-layer composite materials. Materials under consideration are assumed to be perfectly bonded 

together. A numerical model (Finite Difference Method) for rectangular geometry based on displacement potential 

function has been developed to investigate the problem. In each layer of the composite the mechanical properties are 

isotropic. Finite difference scheme has been developed for the management of boundary conditions so that all possible 

mixed boundary conditions can be applied in any boundary points as well as at the interface of isotropic layers. Special 

numerical formulations yield to new formula structures are employed at the interface as well as adjacent boundary 

points of the interface. An effective programming code has been developed in FORTRAN language to solve the 

problem of bi-layer composites. In order to compare the results by the present finite difference method, another 

numerical technique namely finite element method is used. Validation of the results is performed by using 

commercially available FEM package software. It is observed that the results agree well within the acceptable limit, 

which also confirms to the reliability of the finite difference method. At the interface, there is a single value for each 
displacement component but two different values for each stress component of the bi-layer composite having different 

mechanical properties in each layer. Like as usual critical zone of a bi-layer composite under mechanical loading, the 

interfacial zone is also a zone of critical stresses. Changing in Poisson‟s ratio in any layer has significant effects on the 

results of all layers of the bi-layer composite. Due to the mathematical expressions of stresses and displacements for 

two dimensional elastic problems, the study of the effects of Poisson‟s ratio is intricate rather the study of the effects of 

Modulus of elasticity is straightforward. In general, the material having higher modulus of elasticity experiences higher 

stresses. 
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1. Introduction 

Now-a-days composite is a very common word because 

of its multipurpose application in many industries such 

as aerospace, automotive, marine, construction etc. The 

word “composite” means „consisting of two or more 

distinct parts‟. Composites are formed by combining 

materials together to form an overall structure that is 

better than the individual components. The constituent 
materials have significantly different physical or 

chemical properties, that when combined, produce a 

material with characteristics different from the 

individual components. The individual components 

remain separate and distinct within the finished 

structure. In bi-layer composite, there are two materials 

bonded together having different mechanical properties. 

 

The concept of stress analysis of the bi-layer composite 

is relatively new. But increasing demand of the bi-layer 

composite made it very lucrative field for research. 
Zabulionis [1] performed stress and strain analysis of a 

bi-layer composite beam under hygrothermal loads 

considering slip at the interface of the layers. It was 

solved analytically assuming that load-slip relationships 

for the interlayer connections are linear and layers‟ 

stress and elastic displacement relation is linear. Long et 

al. [2] predicted the nominal stress-strain curves of a 

multi-layered composite material by FE Analysis. 

Sevecek et al. [3] analytically performed stress-strain 

analysis of the laminates with orthotropic (isotropic) 

layers using Classical Laminate Theory and compared it 

with finite element analysis considering the thermal 

loading. Some other researchers have used finite 

element technique for stress analysis of some layered 

materials [4-6]. Problems with various mechanical 

loadings were not present in these studies. 

 
Later, the displacement potential function approach of 

the finite difference method had been extended for 

investigating bond-line stresses of tire tread section by 

Sankar et al. [7] and determination of the stresses for 

composite lamina considering directional mechanical 

properties was performed by Alam et al. [8]. But it was 

confined into single layer only. Therefore, stress 

analysis in layer to layer materials as well as at the 

interfaces is yet to be solved by this approach.  

From the above survey it is evident that, the present 

study of finding state of stress and displacement in bi-
layer composite for various mechanical loadings is not 

only an interesting practical subject, but also of great 

importance because of its presence in many structural 

components. Application of finite difference technique 

based on displacement potential function for the 

solution of interfacial stress as well as in the body will 

be a new attempt to extend the capability of 

displacement potential formulation. 



 MIE14-251- 2 

2. Governing Equations 

Stress analysis in an elastic body is usually a three 

dimensional problem. But in most cases, the stress 

analysis of three-dimensional bodies can easily be 

treated as two-dimensional problem, because most of 

the practical problems are often found to conform to the 

states of plane stress or plane strain. In case of the 

absence of body forces, the equations governing the 

three stress components σx, σy and σxy under the states 

of plane stress or plane strain are: 

 
𝜕𝜎𝑥

𝜕𝑥
+  

𝜕𝜎𝑥𝑦

𝜕𝑦
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𝜕𝜎𝑦
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+ 
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𝜕𝑥2 +
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𝜕𝑦2
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In absence of body forces, the equilibrium equations for 

two dimensional elastic problems in terms of 

displacements components are as follows 
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These two homogeneous elliptic partial differential 

equations Eq.(4) and Eq. (5) with the appropriate 

boundary conditions should be sufficient for the 

evaluation of the two functions u and v, and the 

knowledge of these functions over the region concerned 

will uniquely determine the stress components. 

Although the above two differential equations are 

sufficient to solve mixed boundary value elastic 

problems but in reality it is difficult to solve for two 
functions simultaneously. So, to overcome this 

difficulty, investigations are necessary to convert 

equations (Eq. 4 and 5) into a single equation of a single 

function. 

A new potential function approach involves 

investigation of the existence of a function defined in 

terms of the displacement components. In this approach 

attempt had been made to reduce the problem to the 

determination of a single variable. Thus the problem is 

reduced to the determination of a single function ψ(x,y) 

instead of two functions u and v, simultaneously, 

satisfying the equilibrium Eq.(4) and (5) [9-10] by 
defining a potential function ψ(x,y) in terms of 

displacement components as follows as in the case of 

Airy‟s stress function φ(x,y) [7],  

 

𝑢 =
𝜕2𝜓

𝜕𝑥 .𝜕𝑦
                                                                      (6) 
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With this definition of ψ(x,y), the Eq.(4) is 

automatically satisfied. Therefore, ψ has only to satisfy 

the Eq. (5). Thus, the condition that ψ has to satisfy is 

 

𝜕4𝜓

𝜕𝑥4 +  2
𝜕4𝜓

𝜕𝑥2 .𝜕𝑦2 +
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Therefore, the problem is now formulated in such a 

fashion that a single function ψ has to be evaluated from 
bi-harmonic Eq.(8), satisfying the boundary conditions 

specified at the boundary. 

 

2.1 General Boundary Conditions 

In order to solve a problem in terms of potential 

function ψ of the bi-harmonic equation (Eq. 8), the 

boundary conditions should be expressed in terms of ψ. 

The boundary conditions of a problem are known 

restraints and loadings, that is, known values of 

components of stresses and displacements at the 

boundary. The boundary conditions at any point on an 

arbitrary shaped boundary are known in terms of the 

normal and tangential components of displacement, un 

and ut and of stress components σn and σt. These four 
components are expressed in terms of u, v, σx, σy, σxy, 

the components of displacement and stress with respect 

to the reference axes x and y of the body as follows: 

𝑢𝑛 =  𝑢. 𝑙 + 𝑣. 𝑚                                                          (9) 

𝑢𝑡 =  𝑣. 𝑙 − 𝑢. 𝑚                                                        (10) 

𝜎𝑛 =  𝜎𝑥 . 𝑙2 + 𝜎𝑦 . 𝑚2 + 2𝜎𝑥𝑦 . 𝑙. 𝑚                           (11) 

𝜎𝑡 =  𝜎𝑥𝑦 .  𝑙2 − 𝑚2 + (𝜎𝑦 − 𝜎𝑥). 𝑙 𝑚                     (12) 

 

Now these above boundary conditions can be expressed 

in terms of ψ by substituting the following expressions 

of the components of displacement and stress into 

Eq.(9) to (12). 
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From the above expressions it is found that, as far as 
boundary conditions are concerned, either known 

restraints or known stresses or combinations of stresses 

and displacements, all can be converted to finite 

difference expressions in terms of ψ at the boundary. 

 

2.2 Model Problem and its Boundary Conditions 

A model problem is chosen for this study is shown in 

fig 1(a). It is a bi-layer composite under uniform axial 

loading. Length =1.5*width i.e. b=1.5*a. The interface 

lies at a distance of a/2 from the top or bottom edge of 

the bi-layer composite. The purpose of the paper is to 

investigate the interface stress and strain i.e. 

displacements. The modulus of elasticity and Poission‟s 
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ratio of the upper material of the bi-layer composite is 

E1 and µ, and for lower material is E2 and µ2 

respectively. The necessary boundary conditions are 

shown in fig 1(b). The left edge is rigidly fixed that 

makes un,ut=0.0 for 0 ≤ x ≤ a and y=0. The upper and 

bottom edge is free and obviously σn,σt=0 for 0 ≤ y ≤ b 

and x=0 or a. The boundary conditions at the right edge 

is given in terms of normal and tangential components 

of stress σn=P=2x 10-4 and σt=0.0 for 0 ≤ x ≤ a and y=b. 
The stress components are normalized by young 

modulus, E which is the average of E1 and E2.  

 

 

 

 

 

 

 

 

 

a)                                                  b) 

Fig.1 a) Axially loaded member and b) Necessary 

boundary conditions. 

 

3. Solution of the Problem 

For the solution of the problem, a two dimensional mesh 

is generated based on rectangular coordinate system. 
The function ψ from the governing Eq.(8) is evaluated 

at various mesh points inside the body using central 

difference formula. The function ψ from the boundary 

conditions is evaluated in the same manner by forward 

and backward difference formula at the boundary points 

depending on the physical boundary. A FORTRAN 

code has been developed to investigate various aspect of 

the problem. The full procedure of the management of 

boundary conditions has already been discussed in the 

papers [11-13]. But at the interface of the bi-layer 

composite the above procedure [11-13] of the 

management of boundary conditions does not give 
satisfactory results. In this paper, a new procedure of the 

management of boundary conditions at the interface has 

been developed. Among boundary conditions those 

depend on material properties have to be managed under 

this new procedure. The displacement component, u has 

not to be modified by new procedure because it does not 

depend on material properties Eq.(13). The 

displacement component, v is dependent on the material 

properties and continuous over the bi-layer composite. 

At the interface, two materials are perfectly bonded 

together, hence the displacement component, v of the 
common node point is the average of the two 

displacement components v1 and v2 considering through 

the each side of the material. So, at the left side of the 

interface it could be written as- 

 v1 i,j +  v2 i,j = 2v                                                     (18) 

 

Stencil of this Eq.(18) is shown in fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Stencil of v at the left point of the interface line. 
 

At the interface two points from upper and lower 

material are actually bonded together in a bi-layer 

composite. The normal stress acting at the interface 

boundary point is shown in Fig. 3(a) and shear stress 

acting at the interface is shown in fig. 3(b). 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

               

             a) Normal stress                          b) Shear stress 

Fig.3 a) Normal stress and b) Shear stress at the 
interface of bi-layer composite. 

 

The average of normal stresses of upper material and 

that of lower material should be equal to the applied 

normal stress at that point. Thus it could be written as- 

 σy1 i,j
+  σy2 i,j

= 2σy                                                (19) 

 

By similar fashion, the average shear stress at interface 

can be written as- 

 
 σxy 1 i,j

−  σxy 2 i,j
= 2σxy                                            (20) 

 

The stencils of the above two Eq.(19) and (20) are 

shown in Fig. 4. If one needs to apply boundary 

conditions σy and σxy at the left boundary interface one 

can easily formulate finite difference equation by taking 

mirror reflection about a vertical plane through the 

member. This is also valid for any other boundary 
conditions.  Besides the above modification of stencils 

of boundary conditions some other modifications near 

the interface region is necessary for better results. Due 

to this, several formula structures are derived for 
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solving the problem of the bi-layer composite. Although 

the formulae are correct in mathematical point of view 

but the coefficient matrices of the system of equations 

become ill-conditioned and provide ill results, thus 

become unsuccessful formulae. The stencils of 

boundary conditions which provide the most accurate 

solution of the problem from the view point of our 

experience and coincidences with FEM results are 

shown in fig.5 which signifies that more inclusions of 

nodal points of interface region provides better results. 

Here this modification is necessary only for right 
boundary because of presence boundary conditions 

σy=P and σxy=0. But, if left boundary is also subjected 

by same type boundary conditions then it is also 

necessary to apply this modification at the left boundary. 

There is no need of modification for boundary 

conditions u=0 and v=0 because the existing formulae 

of these boundary conditions includes nodal points of 

both materials.    

 

 

 

 

 

 

 

 

 

 

 

                       a)                                              b)  

Fig.4 Stencil of a) Normal stress and b) Shear stress at 

right edge of the member.  

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Suitable grid structures of tangential stresses at 

the adjacent points of the interface. 

4. Results and Discussions 

Since no analytical solution as well as FDM solution of 

the problem has not been found, the solution of the 

problem is represented as a comparison with FEM 

solution which is obtained by commercial software 

Ansys v14.0. In this paper only variation in poissons 

ratio of two materials is taken in account and it is taken 

as 0.32 and 0.28 for the upper and lower material 

respectively. The modulus of elasticity is taken as same 

in both material. Following the procedure stated in 

previous section and taking the mesh size 0.02 unit, 

results are obtained by both FEM and FDM methods. 

In both FEM and FDM analysis, u and v are continuous 

over the bilayer composite and there is a single value for 

each parameter at the interface point. But in case of 

stresses, there are two values of each stress component 

one is for upper material and one is for lower material. 

Although there is a single nodal point at the interface 

actually it is a perfectly bonded two nodal points i.e. 

two nodal points from upper and lower material merge 

together and form a single interface point. By both the 

method, two values of each stress component are 

obtained and there is a discontinuity in the distribution 
of stress at the interface line of the bilayer composite 

material. 

Fig.6 shows the comparison of displacement (v/b) 

distribution at various sections of the bilayer composite 

obtained by FDM and FEM analysis. At y/b=0.0, two 

results are exactly identical as the two lines merge 

together. At other sections of the material there are very 

small differences in two results. Near. In FEM results, 

the variation of the displacement component (v/b) is 

more likely identical at the upper and lower materials of 

the bilayer composite although there are different 

poissons‟ ratios in upper and lower materials. But in 

FDM results, there is non-identical displacement 

component (v/b) at the upper and lower materials. The 

displacement component (v/b) by FDM is smaller at the 

upper material (μ1=0.32) than FEM result and at the 

lower material (μ2=0.28), FDM result for displacement 

component (v/b) is larger than the FEM result. But the 

variation of the two results is not in significant amount. 

As there are different poissons‟ ratios in two materials 

of the bilayer composite, the FDM results are more 

logical in that sense. 

The distribution of σxy as shown in fig.7 matches up 

with each other by FDM and FEM method in different 

sections of the bilayer except at the top and bottom 

boundary points of section at y/b=0.0. Actually, the 

upper corner point could be considered at the both top 

and left boundary. Similarly, the lower corner point 

could be considered at the both bottom and left 

boundary. If top boundary condition is applied at the 

upper corner point, there is mismatch in results of 
boundary point by FDM and FEM. In FDM, there is 

provision to apply either of the two boundary conditions 
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at the corner points. If left boundary conditions are 

applied at the upper and lower corner points, the FDM 

result becomes consistent with the FEM result as shown 

in fig.8. 
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Fig.6 Comparison of displacement (v/b) distribution at 

various sections of the bilayer composite. 

xy /E x10
4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

x
/a

0.00

0.20

0.40

0.60

0.80

1.00

y/b=1.00 FDM

y/b=1.00 FEM

y/b=0.24 FDM

y/b=0.24 FEM

y/b=0.00 FDM

y/b=0.00 FEM

n, t

un, ut

 
Fig.7 Comparison of shear stress distribution at 

different sections of the bilayer composite. 

xy /E x10
4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

x
/a

0.00

0.20

0.40

0.60

0.80

1.00

y/b=1.0 FDM

y/b=1.0 FEM

n, t

un, ut

 
Fig.8 Comparison of normalized shear stress (σxy/E) 

distribution at y/b=0.0 of the bilayer composite. 

 

The distribution of σy at various sections of the bilayer 

composite by FDM method is shown in fig.9. It 

indicates that for this particular problem stress at section 

y/b=0.0 is very significant as compared to the other 

sections of the material which is shown in fig.10 and 

most of the case it is simply equal to applied stress. 

From fig.9, it is seen that the FEM result shows smaller 
value of stress σy at the boundary corner points (most 

critical point in engineering point of view as it 

correspond the highest stress) than FDM result. This is 

obvious because in FEM method stress is calculated at 

every element and then extrapolated to find stress at the 

boundary. The distribution of stress σx at section 

y/b=0.0 as shown in fig.11 and indicates that, there is a 

bumping of the stress distribution curve at the interface 

of the bilayer composite. It is noted that, in FDM there 

is a provision of adjusting the corner point boundary 

conditions that is corner points could be considered at 

the either of the two boundaries i.e. at this point, either 

u=0,v=0 and σxy=0 or u=0,v=0 and σx=0 can be applied 

as boundary conditions. But the application of left 

boundary condition i.e. u=0,v=0 and σxy=0 at the corner 

point best accords the two solutions by FDM and FEM 

method. This so because if it is applied that u=0,v=0 and 

σx=0 at the left boundary corner then the FDM should 
gives σx=0 at this point and from the practical 

knowledge we know that at fixed support there always 

developed bi-directional resistive force and hence stress. 
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Fig.9 Comparison of normal stress (σy/E) distribution at 

y/b =0.0 by FDM and FEM. 
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Fig.10  Normalized normal stress (σy/E) distribution at 
different sections of the material by FDM. 

y/b = 0.00

x /E x10
4

0.40 0.60 0.80 1.00 1.20 1.40

x
/a

0.00

0.20

0.40

0.60

0.80

1.00

FDM

FEM

 

un, ut 

σn, σt 

 

 
Fig.11 Comparison of normal stress (σx/E) distribution 

at y/b =0.00 considering the corner point at left 

boundary in FDM analysis. 
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5. Conclusions 

The available FDM method for the numerical solutions 

of mixed boundary-value elastic problem based on the 

ψ-formulation can be applied to analysis of stresses and 

displacements of bi-layer composite by changing of 

formulation of finite difference equations of boundary 

conditions at the interface of bonding of two isotropic 

materials. The numerical formulations with greater 

inclusion points at the interface provide better solution 

of the bi-layer composite as they ensure proper 

compatibility between two materials. 
 

NOMENCLATURE 

E 

µ 

ψ 

σx 

σy 

σxy 

σn 

σt 

u 

v 
l, m 

 

un 

ut 

: Modulus of Elasticity, GPa 

: Poisson ratio 

: Displacement potential function 

: Normal stress component along x-direction 

: Normal stress component along y-direction 

: Shear stress component in the xy plane 

: Stress component normal to boundary 

: Stress component tangential to boundary 

: Displacement component along x-direction 

: Displacement component along y-direction 

: Direction cosine of the normal at any physical 

boundary point 

: Displacement component normal to boundary 

: Displacement component tangential to boundary 
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