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ABSTRACT 

A hand-made numerical program based on Body Force Method (BFM) applicable to planar crack problems is 

developed. Numerical analysis is carried out for arbitrary shaped coplanar 3D cracks interacting each other in an infinite 

solid. As a fundamental solution, a stress field at an observation point induced by a body force doublet applied at a 

source point in an infinite elastic medium is employed. In the present analysis, a planar triangular element is used to 

cover the total crack surface. Special crack tip elements considering the stress singularity at a crack front are employed 

to the crack front element. The crack problem is formulated as hypersingular boundary integral equations with unknown 

distribution of the body force doublet. Finally, the unknown distribution of the body force doublet is solved by 

transforming the boundary integral equation into a set of simultaneous equations. In addition to the theoretical 

background of the present method, several numerical results are shown graphically.  
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1. Introduction 

A crack to crack interaction exhibits a major influence 

on behavior of crack growth. Multiple cracking is one of 

the most common problems in engineering structures 

and may caused catastrophic or structural failures in 

aircraft, ship, bridge, automotive components and 

machine parts. The interactions of crack change the SIF 

and stress distribution near the crack fronts. The SIF and 

stress distribution because of crack interaction not only 

depended on the number of cracks but also the size, 

shape, distance between cracks. The analysis of SIF and 

stress distribution due to crack interaction is very 

important and useful in evaluating the strength and safe 

life prediction of engineering materials structures.  

Several numerical methods have been applied for the 

SIF and stress distribution analysis of multiple cracks, 

such as finite element method [1], enriched meshless 

method [2], integral equation method [3], boundary 

element method [4], boundary collocation method [5], 

Lagrangian finite difference method [6], alternating 

iteration method [7] and body force method. Among 

these methods FEM and BEM are much more general 

than other methods. But the main problem in BEM and 

FEM is that, it is indispensable to divide a whole 

domain or surface into several segments. Furthermore, it 

is not convenient to simulate the crack propagation due 

to need for re-meshing near crack tips. In this paper 

body force method (BFM) has been used for the 

analyzing multiple cracks. Nisitani proposed BFM as a 

method of numerical stress analysis [8]. Compared with 

the FEM, the BFM has some advantages in solving 

elastic fracture problems. The reason is due to the fact 

that the BFM only contains the boundary discretization 

of the problem domain and a more accurate result could 

be obtained with a lesser effort. Nisitani et al. [9] first 

applied the body force method to investigate problems 

of an elliptical crack or a semi elliptical crack in an 

infinite plate under tension. After that Murakami et al. 

[10] applied BFM for the analysis of interaction 

between semi-elliptical surface cracks in an 

semi-infinite elastic body under tension and bending. 

Isida et al. [11] applied BFM for the first time to 

analyze two parallel elliptical cracks under mixed-mode 

stress state at the infinity. Isida et al. [12] again applied 

BFM for the analysis of multiple semi-elliptical surface 

cracks in semi-infinite solid under tension. Wang et al. 

[13] discussed numerical solutions using singular 

integral equation of the BFM for 3D rectangular crack 

problems. Later Noda et al. [14] applied singular 

integral equation method based on BFM for the 

calculation of SIF of interacting semi-elliptical surface 

cracks. In BFM, each research has been carried out by 

developing the special numerical program suitable for 

each problem. Therefore, a versatile stress analysis 

program applicable to arbitrary shaped 3D interacting 

cracks under mixed-mode loading has not been 

developed until today.   

In this research a versatile numerical program has been 

developed for the analysis of mixed-mode planar crack. 

The 3D crack problem is formulated in terms of singular 

integral equations with singularity of the order of r
-3

, 

where r is the distance between source and reference 

points. The stress field induced by a body force doublet 

in an infinite body is used as the fundamental solution. 

The unknown functions are approximated by the 

product of fundamental density function and weight 

function. The approximate solution is obtained easily by 

providing the triangular mesh data and boundary 

conditions. By using the developed program, the 

coplanar interactive surface cracks in an infinite solid 
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subjected to remote tension and bending loads are 

computed.  
 

2. Fundamental principle of BFM 

The body force method (BFM) is directly based on this 

principle of superposition. The essence of BFM is to 

transform a given elastic problem to an equivalent 

problem of an infinite domain in which body forces are 

embedded. BFM is classified as an indirect BEM since 

the stress and displacement at a reference point is 

expressed in terms of densities of body force. The 

fundamental concept of BFM is to express the elastic 

fields of a problem by means of the principle of 

superposition. A solution of an elastic problem should 

satisfy three conditions of i) equilibrium condition, ii) 

compatibility condition and iii) boundary condition. 

Since the elastic fields are superposable, in BFM the 

elastic field due to a point force under investigation can 

be expressed by superposing some specific known 

elastic fields. In the BFM the specific known elastic 

fields, which can be written in a closed form, are 

superposed with some unknown weight-magnitudes as 

follows 

 

 

     =∑           (1) 

 

 

If a given boundary condition is satisfied by adjustment 

of the unknowns in Eq. (1), the superposed elastic field 

is the solution of the given problem, because the 

solution of elastic problem is unique. Finally Eq. (1) is 

transformed into summation of simultaneous equations 

and unknown weight magnitudes to be determined 

through boundary conditions. If the boundary condition 

is satisfied exactly, it means that an exact solution is 

derived by BFM.  

Consider an infinite body having a penny-shaped crack 

on x-y plane which is subjected to uniform tension at 

infinity. According to the body force method this 

problem is transferred as a combination of two problems. 

One is an infinite solid with uniform stress distribution 

at the infinity and another is an imaginary crack in an 

infinite solid along which the unknown force doublets is 

acting continuously as shown in Fig. 1.   

 

Fig.1 Uniaxial tension of an infinite solid with a single 

penny-shaped crack.  

The stress component at an arbitrary point in an infinite 

solid with crack can be expressed as follows,  

          
         

                               

   

 

Where P(x,y,z) is a reference point, Q(     ) is a source 

point,    is an imaginary crack surface,     
      

represents the initial stress at the reference point,     is 

the density of force doublet,    
        is the stress 

component at a reference point which is obtained by 

differentiation with respect to co-ordinate variable 

            of the stress component      due to a unit 

magnitude of point force acting in the             

direction at the source point [15]. In order to 

determine       , it is required to approach P from the 

exterior of   to the surface of the crack. At the surface 

of the crack, the traction-free condition is applied. Thus 

Eq. (2) becomes the boundary integral equation for the 

determination of unknown density          in a 

complete infinite domain. Once the unknown 

density                 is obtained, the stress at an 

arbitrary point   can be obtained by 

putting               in Eq. (2). In such a way, an 

arbitrary boundary value problem is transformed into a 

form of integral equations with unknown density 

through the principle of superposition of the known 

fundamental solution.   

 

3. Theoretical Analysis  

In BFM, solution of any elasticity problem is 

transformed into a problem of a complete infinite 

domain without any crack. That is, a boundary of given 

problem is replaced by an equivalent imaginary 

boundary along which body force or body force 

doublets are embedded. In BFM, an elastic boundary 

value problem is transformed into the form of a 

boundary integral equation. Consider an infinite body 

having a penny-shaped crack as shown in Fig. 2 which 

is subjected to mixed mode loading at infinity. 

 

Fig.2 Crack in an infinite solid subjected to uniform 

stress at infinity. 
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Let         and     be the stress component due to the 

fundamental force doublets distributed over the crack 

surface and stress at the infinity. On the idea of the body 

force method, the problem is reduced to sets of integral 

equations in which the density of force doublets are 

unknowns to be determined. The stress components at 

any arbitrary point are as follows:  

          
          

             

  

 

    
                 

                             

          
          

             

  

 

    
                 

                            

          
          

             

  

 

    
                 

                             

Where P(x,y,z) is a reference point, Q(     ) is a source 

point,    is an imaginary crack surface,         and 

    are the density of standard force doublets.   

In above equations the fundamental solutions are 

calculated from the following expressions.  

   
         

    
 

  
 
   

    
    

 

  
 
   

  
    

 

  
 
   

         

   
         

    
 

  
 
   

  
    

 

  
 
   

                                      

   
  

       
    

 

  
 
   

  
    

 

  
 
   

                                      

             
 

   
 

Where,    
      

    and    
   be the stress components due 

to the fundamental force doublets distributed over the 

crack surface.    
     

 and     
  are the known 

expressions of stress components at point  (x,y,z) due 

to concentrated forces acting at point          called 

Kelvin solution. The concrete from of fundamental 

solution are as follows:  

   
        

    

        
 
 

  
  

  
 

  
   

  
 

  
               

   
        

 

       
     

 

  
  

  
 

  
                         

   
        

 

       
     

 

  
  

  
 

  
                        

   
        

       

        
     

 

  
  

  
 

  
                       

   
        

 

       
 
 

  
 

    
 

  
 

    
   

 

  
         

   
        

 

       
     

 

  
  

  
 

  
                         

   
        

       

        
     

 

  
  

  
 

  
                       

   
        

 

       
     

 

  
  

  
 

  
                         

   
        

 

       
 
 

  
 

    
 

  
 

    
   

 

  
         

Where                             

        
 

   
    

  and   is the poisson’s ratio.    

In this analysis, the surface of the crack is expressed by 

the aggregation of planar triangles and in each triangle 

the density of the force doublets is assumed at constant. 

The triangles which are placed at the crack front, the 

basic density function is considered as shown in Fig. 3. 

Density of standard force doublets         and     are 

expressed by the product of basic density function      η  

and weight functions        η        η   and 

      η  respectively.  

                                                                     

                                                                    

                                                                    

       
                     

    
     

 
                         

Where          and            

When the crack is free of traction,         and     are 

zero at the same time, when      . 

 

Fig. 3 Planar triangle surface element with force 

doublets (shaded triangle in Fig. 2).  
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Fig. 4 Parameter transformation from cartesian to polar 

coordinates.  

After solving the simultaneous equations expressing the 

boundary condition, the value of weight functions are 

obtained. Weight function           is responsible for 

the mode-I SIF KI and       η           are 

responsible for the KII and KIII at crack front. Hyper 

singularity occurs, when observation point is on crack 

surface i.e.     and      In order to remove this 

singularity polar transformation has been used. For the 

calculation of integral equations numerically, 

integration limits varies depending on the position of 

observation points. We can calculate          from the 

vertices of triangle and observation point. For    if the 

observation point is inside of triangle then       
    if outside of triangle then       as shown in Fig. 

4. Here,      means a distance between reference 

point P(x,y) and a point on the prospective boundary of 

the triangle as shown in Fig. 4.  

4. Numerical results and discussion 

In order to employ the BFM to deduce the interaction 

effects of multiple cracks on their SIF values, it is 

necessary to correlate the SIF values of single crack 

predicted by BFM with published data. Initially, a single 

crack subjected to mixed-mode loading at infinity is 

considered to illustrate the effectiveness of the present 

analysis. The normalized SIF is compared with the 

literature solution. In this method desirable results can 

be obtained with relatively coarse pattern as the SIFs 

values are obtained by extrapolating the obtained results 

for different number of triangles NT. The accuracy of 

the SIF calculation was satisfactorily examined for 

rectangular, penny-shaped and elliptical planar cracks 

embedded in an infinite elastic body. Later the 

numerical results of stress distribution for the 

interference effects between two coplanar penny-shaped 

cracks, elliptical cracks, rectangular cracks, 

penny-shaped and elliptical cracks, penny-shaped and 

rectangular cracks, and elliptical and rectangular cracks 

has been carried out. The obtained numerical results 

shows that the numerical approach presented in the 

present study is simple, yet very user friendly for 

analyzing the interference effect of arbitrary shaped 

multiple cracks in plane elasticity. In order to verify the 

numerical accuracy, SIF calculation was examined for 

elliptical cracks with different aspect ratio embedded in 

an infinite elastic body. In this paper, for all cases the 

poisson’s ratio was set at      . In demonstrating the 

results of stress intensity factor SIFs, the following 

dimensionless Fn will be used.  

     
     

   
    

                                                                      

Where,           and n=I,II,III.  

The normalized SIFs of elliptical crack is calculated for 

different aspect ratio and plotted in Fig. 5. The 

normalized mode-I stress intensity factor FI is compared 

with the exact solutions. It is found that the present 

solutions are almost coincides with the exact solution. 

In present research the surface of the corresponding 

crack was divided with regularly distributed number of 

triangles NT. In this method desirable results can be 

obtained with relatively coarse pattern as the SIFs 

values are obtained by extrapolating the obtained results 

for different number of triangles.  

 

Fig. 5 Normalized mixed-mode SIF of a elliptical crack. 

 

Fig. 6 Interference of two cracks under mixed-mode 

loading at infinity.  
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Fig. 6 shows the two coplanar cracks in an infinite 

elastic medium under remote loading at infinity along zz, 

zx and yz direction. The distance e between A and B can 

be varied. Both cracks surface is meshed in a same 

number of triangles NT. The ratio of minor and major 

axes of elliptical cracks are varied. When the radius of 

each crack is a=b=1.0, the normalized      distribution 

along x-axis for different values of e is shown in Fig. 7. 

It is found that the smaller the distance e between A and 

B, the greater the change of stress distribution along line 

AB. Near point C, the influence of the distance between 

A and B on the stress intensity factor is smaller. When 

e/a=0.5 and for the same radii of penny-shaped crack, 

the stress distribution is higher than stress distribution 

for other values of e/a. But as the ratio of d/a is 

increases the stress distribution is decreases. When the 

ratio of e/a=2.0, the stress distribution is same manner 

like the stress distribution of single penny-shaped crack 

as shown in Fig. 7. The interference analysis between 

elliptical cracks under mixed stress state at the infinity 

is also carried out. The normalized      distribution 

along x-axis between elliptical cracks for different 

values of e is shown in Fig. 8. The normalized stress 

distribution has the same trend like the normalized 

stress distribution between penny-shaped cracks.  

 

Fig. 7 Interference analysis between penny-shaped cracks. 

 

Fig. 8 Interference analysis between elliptical cracks. 

 

Fig. 9 Interference analysis between penny-shaped and 

elliptical cracks. 

 

Fig. 10     distribution between various shaped planar 

cracks (e/a=0.5). 

 

Fig. 11 Distribution of     along x-axis for uniform stress 

and bending loads. 
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stress distribution decreases. Fig. 10 shows the 

interference effect between different shaped cracks with 

fixed distance of e/a. The number of triangular elements 

for each crack was fixed at 400. Among compared for 

both cases, the rectangle to rectangle crack combination 

showed the largest interference effect. The interference 

analysis of cracks under bending load is also analyzed. 

Fig. 11 shows the interference between penny-shaped 

cracks under uniform stress and bending loads 

respectively for fixed distance between center of cracks 

and fixed NT.  

5. Conclusion 

The SIFs of cracks were evaluated using developed 

numerical program based on BFM. In this study, the 

effect of interaction between different shaped cracks on 

the SIFs and stress distribution was investigated. The 

problem was formulated as an integral equation on the 

idea of BFM. The unknown functions were 

approximated by the product of fundamental density 

function and weight function. The approximate solution 

is obtained easily by providing the triangular mesh data 

and boundary conditions. The interaction is influenced 

not only the relative position but also by the relative 

shape and length of crack. The interaction between two 

cracks becomes large as the distance between the cracks 

become small. If the crack length difference is greater 

than a certain level, there is no interaction effect on the 

stress distribution. From the obtained results it was 

found that the developed numerical program is 

applicable for analyzing interacting between arbitrary 

shaped planar cracks under any loading condition. Any 

kinds and any number of 3D planar cracks under any 

loading condition can be solved effectively only by 

providing input data.   

NOMENCLATURE 

P (x,y,z)  : Reference point 

Q(     ) : Source point 

    : Density of standard force doublets (i,j=x,y,z) 

        : Basic density function  

       η  : Weight functions (i,j=x,y,z) 

R(θ) : Distance between reference point and a point  

on the prospective boundary 

        : Stress components (i,j=x,y,z)  

   
     

 
 : Stress at the infinity (i,j=x,y,z) 

a, b : Major and minor axes of cracks respectively 

Kn : Stress intensity factor (n=I,II,III)  

Fn : Normalized stress intensity factor (n=I,II,III) 

NT : Number of triangles 

s : Distance from the crack surface along x-axis 

e : Distance between cracks surface 
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