JES an International Journal

COMPACTNESS IN FUZZY SUPRA TOPOLOGICAL SPACES

M. Y. Molla¹, D. M. Ali² and Md. Bazlar Rahman^{1*}

¹Department of Mathematics, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh ²Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh

Received: 06 June 2011 Accep

Accepted: 08 August 2011

ABSTRACT

The aim of this paper is to introduce and study compactness in fuzzy supra topological spaces. Many properties and characterizations of this with concept have also been investigated.

Keywords: Fuzzy supra Compact, Fuzzy supra topological space, Lower semi continuous functions, α -supra compact.

1. INTRODUCTION

In 1965 American mathematician Lotfi A. Zadeh introduced the notion of fuzzy set which has useful applications in various fields. The Fuzzy Supra topological space is a generalization and fuzzification of general Supra topological space. In this paper, we introduce compactness in fuzzy supra topological space and also establish a number of characterizations in this regard.

Let X be a non-empty set, and let I = [0, 1]. Let I^X denote the set of all mappings $\lambda : X \to I$. A member of I^X is called a fuzzy subset of X. The union and intersection of fuzzy sets are denoted by the symbol \vee and \wedge respectively and defined by

 $\vee \lambda_i = \max \{ \lambda_i(x) | i \in J \text{ and } x \in X \}$

 $\wedge \lambda_i = \min \{\lambda_i(x) | i \in J \text{ and } x \in X\}$ where J is an index set.

Definition: 1.1. Let X be a non-empty set, and I = [0, 1]. A subfamily t^* of I^X is said to be fuzzy supra topology on X.(Monsef and Ramadan 1987) if

 $(1) 0, 1 \in t^*$

(2) $\alpha_{i \in t}$ for all $i \in J$ then $\vee \alpha_{i \in t}$.

 (X, t^*) is called a fuzzy supra topological space, in short fsts. The elements of t^* are called fuzzy supra open set and their complements are called fuzzy supra closed set. The lower semi continuous functions on $X \times R$ is denoted by symbol $L(\mu^{\epsilon})$ and defined by $L(\mu^{\epsilon}) = \{(x, r): \mu^{\epsilon}(x) > r\}$ where $\beta \subset \omega(t^*)$ and $\sup_{\mu \in \beta} \mu \ge \alpha, r \in [0, \alpha] = I_{\alpha}, \alpha > \epsilon$.

Definition: 1.2. Let $(X, t_1^*), (Y, t_2^*)$ be two fuzzy supra topological spaces. A mapping, $f: (X, t_1^*) \to (Y, t_2^*)$ is called fuzzy supra continuous if the inverse image of each fuzzy supra open set in (Y, t_2^*) is t_1^* fuzzy supra open in X.

Definition: 1.3. Let X be a non-empty set and T^* be a supra topology on X, and let $t^* = \omega(T^*)$ be the set of all lower semi continuous functions from (X, T^*) to I with usual topology(Lowen 1977). Thus

 $t^* = \omega(T^*) = \{ u \in I^X : u^{-1}(r, 1) \in T^* \}, \text{ where } r \in [0, 1] = I_1.$

2. COMPACTNESS PROPERTY OF FSTS

Definition: 2.1. Let (X, t) be a fsts. A family F of fuzzy supra open sets is a cover of a fuzzy set μ if and only

if $\mu \subset \{ \lor \mu_i : \mu_i \in F \}$. It is called a cover of X, if $\bigvee_{i=1}^{n} \mu_i = 1$.

Definition: 2. 2. A fuzzy supra topological space (X, t^*) is fuzzy supra compact, if every supra open cover of X by the members of t^* contains a finite sub cover, that is if $\mu_i \in t^*$ for all $i \in J$, (J is an index set) then there are

finitely many indices $i_{I_1}, i_{2_2}, i_{3_3}, i_{4_5}, i_{5_5}, \dots, i_n \in J$ such that $\bigvee_{J=1}^{n} \mu_{ij} = 1$.

^{*} Corresponding author: brahman@math.kuet.ac.bd

Definition: 2. 3. Let (X, t^*) be a fsts. and $\alpha \in I$. A collection $T^* \subset I^X$ is said to be a fuzzy supra α -shading if and only if for every point $x \in X$ there exist $\lambda \in T^*$ such that $\lambda(x) > \alpha$.

Definition: 2. 4. Let (X, t^*) be a fsts. Let $\alpha \in I$ then (X, t^*) is said to be α -supra compact if every fuzzy supra open α -shading of the space has a finite α -sub shading (Lowen, 1977).

Theorem: 2.5. Let (X, t^*) be a fuzzy supra topological space. Then the following conditions are equivalent.

(1) { μ_i }, $i \in J$ is a cover of X.

- (2) $\bigvee_{i \in J} \mu_i = 1$ where $i \in J \forall x \in X$.
- $(3) \bigwedge_{i \in J} \mu_i = 0 \text{ where } i \in J \forall x \in X.$

Proof: (1) \Rightarrow (2). It is clear from the definition of a Cover, since $\{\mu_i\}$, $i \in J$ is a cover of X means that $\bigvee_{i \in J} \sum_{i \in J} f_i(x_i) = 0$

 $\mu_i = 1$, where $i \in J$, $\forall x \in X$.

(2) \Rightarrow (3) Since $\bigwedge_{i \in I} \mu_i = \inf \{ \mu_i \}$ where $i \in J, \forall x \in X$.

= 1- sup {
$$\mu_i$$
 }, where $i \in J$, $\forall x \in X$.
= 1-1=0.

(3) \Rightarrow (1) From (3) as above it can be shown that $\bigvee_{i \in J} \mu_i = 1$. Which implies that $\{\mu_i\}$ is a cover of X.

Theorem: 2.6. Let (X, T^*) , (Y, S^*) are two fuzzy supra topological spaces, with (X, T^*) fuzzy supra compact. Let $f: X \to Y$ be a fuzzy supra continuous surjection. Then (Y, S^*) is fuzzy supra compact.

Proof: Let $u_i \in S^*$ for each $i \in J$ with $\bigvee_{i \in J} u_i = 1$. Since f is fuzzy supra continuous, so

 $f^{-1}(u_i) \in T^*$. As (X, T^*) is supra compact, we have for each $x \in X$, $\bigvee_{i \in J} f^{-1}(u_i)(x) = 1$.

So we see that $\{ f^{-1}(u_i) \}, i \in J$ is a cover of X. Hence \exists finitely many indices $i_1, i_2, i_3, i_4, i_5, i_6, \dots, i_n \in I$ such that $\bigvee_{i \in J} f^{-1}(u_{ij}) = 1$. Let u be a fuzzy set in Y. Since f is a surjection we observe that for any $y \in Y$

$$f(f^{-1}(u))(y) = \sup\{f^{-1}(u)(z): z \in f^{-1}(y)\}$$

= Sup { $u(f(z)): f(z) = y$ } = $u(y)$

so that $f(f^{-1}(u)) = u$. This is true for any fuzzy set in Y. Hence

$$1 = f(1) = f(\bigvee_{i \in J} f^{-1}(\boldsymbol{u}_{ij}) = \bigvee_{i \in J} f(f^{-1}(\boldsymbol{u}_{ij})) = \bigvee_{i \in J} \boldsymbol{u}_{ij}$$

Therefore $(\mathbf{Y}, \mathbf{S}^*)$ is fuzzy supra compact

Theorem: 2.7. Let (X, T^*) , (Y, S^*) are two fuzzy supra topological spaces, and let $f: X \to Y$ is a fuzzy supra continuous surjection. Let A is a fuzzy supra compact set in (X, T^*) . Then f(A) is also fuzzy supra compact in (Y, S^*) .

Proof: Let $B = \{Gi : i \in J\}$, where $\{Gi\}$ be a fuzzy supra open cover of f(A). Then by definition of fuzzy supra continuity $A = \{f^{-1}(Gi): i \in J\}$ is the fuzzy supra open cover of A. Since A is fuzzy supra compact, then there

exists a finite sub cover of A, that is G_{ik} , k=1, 2, 3,n, such that $A \subseteq \bigvee_{i=1}^{n} f^{-1}(G_{ik})$.

Hence
$$f(A) \subseteq f(\bigvee_{i=1}^{n} f^{-1}(G_{ik})) = \bigvee_{i=1}^{n} f(f^{-1}(G_{ik})) \subseteq \bigvee_{k=1}^{n} G_{ik}$$
.

Therefore f(A) is fuzzy supra compact.

Theorem: 2.8. Let (X, T^*) , (Y, S^*) are two fuzzy supra topological spaces. Then the product $(X \times Y, \delta^*)$ is fuzzy supra compact if and only if (X, T^*) and (Y, S^*) are fuzzy supra compact.

Proof: First suppose that $(X \times Y, \delta^*)$ where $\delta^* = \{G_i \times H_i: G_i \in T^* \text{ and } H_i \in S^*\}$ is fuzzy supra compact, then we can define a fuzzy continuous surjection mapping κ_1 and π_1 from $(X \times Y, \delta^*)$ to (X, T^*) and (Y, S^*) respectively. Now by the theorem 2.6; (X, T^*) and (Y, S^*) are fuzzy supra compact.

Conversely, let (X, T^*) and (Y, S^*) are fuzzy supra compact. Since $\delta^* = \{G_i \times H_i : G_i \in T^* \text{ and } H_i \in S^* \text{ for } i \in J\}$ where G_i and H_i are fuzzy supra open set. We claim that $\{G_i : i \in J\}$ is a cover of X, and $\{H_i : i \in J\}$ is a cover of Y. That is if $\bigvee_{i \in J} G_i(x) = 1$ for all $x \in X$, and if $\bigvee_{i \in J} H_i(y) = 1$ for all $y \in Y$, then $\bigvee_{i \in J} \{(G_i \times H_i)(x, y)\} = \sup\{\min\{G_i(x), f_i\}$

 $H_i(y)$ }. Hence we have finite subset J' of J for which $\bigvee_{i \in J} G_i(x) = 1$ or $\bigvee_{i \in J} H_i(y) = 1$. Hence we have $\delta^* = \{G_i \times H_i : G_i(x) = 1\}$

 $G_i \in T^*$ and $H_i \in S^*$ for $i \in J$ is a finite sub cover of $(X \times Y, \delta^*)$. Hence $(X \times Y, \delta^*)$ is fuzzy supra compact.

Corollary: 2.9. If $(X_i, \delta_i)_i \in J$ is a family of fuzzy supra compact topological spaces then $(\pi_i \in J X_i, \pi_i \in J \delta_i)$ is also fuzzy supra compact.

Theorem: 2.10 The fuzzy supra topological space $(X, \omega(t^*))$ is fuzzy supra compact if and only if (X, t^*) is supra compact.

Proof: Firstly suppose that (X, t^*) is supra compact, let $\beta \subset \omega(t^*)$ be such that $\sup_{\mu \in \beta} \mu \geq \alpha$. Let the lower semi continuous functions $L(\mu^{\epsilon}) = \{(x, r): \mu^{\epsilon}(x) > r\}$ is an supra open set of $X \times R$, $r \in [0, \alpha] = I_{\alpha}, \alpha > \epsilon$. Now $\sup_{\mu \in \beta} L(\mu^{\epsilon}) \supset X \times I_{\alpha}$, we know that $X_{\alpha} \times I_{\alpha}$ is supra compact. Hence \exists finite subfamily $\beta_{1} \subset \beta$, which covers $X \Longrightarrow (X, \omega(t^*))$ is fuzzy supra compact.

Conversely, suppose fuzzy supra topological space $(X, \omega(t^*))$ is a fuzzy supra compact. Then from definition of fuzzy supra compactness $\exists \beta_1 \subset \beta$ and $\mu_i \in \beta_1$ such that Sup $\mu_i = 1$. Hence (X, t^*) is supra compact.

Theorem: 2.11. Let (X, t^*) is a fuzzy supra topological compact space then there exist a fuzzy supra compact topology $\omega(t^*)$ in which every closed fuzzy set is also fuzzy supra compact.

Proof: Let α and $\alpha^c \in \omega(t^*)$, and $\beta \subset \omega(t^*)$ such that $\sup_{\mu \in \beta} \mu \ge \alpha$. Now $\alpha^c \in \omega(t^*) \Longrightarrow 1 - \alpha \in \omega(t^*)$, hence the collection $T(\alpha) = \{(x, r): \alpha(x) \le r\}$ is fuzzy supra open in $X \times I$.

Therefore $T(\alpha)^c$ is fuzzy supra compact. Choosing $\epsilon > 0$ and taking $\mu^{\epsilon} = \mu + \epsilon$, we have

Sup $_{\mu\in\beta} L(\mu^{\epsilon}) \ge T(\alpha)^{c}$ so there exist finite subfamily β_{0} of β such that Sup $_{\mu\in\beta} L(\mu^{\epsilon}) \ge T(\alpha)^{c}$. So in $\omega(t^{*})$ for which every closed fuzzy set is also fuzzy supra compact. Hence the proof of the theorem is complete.

Theorem: 2.12. Let $0 \le \alpha \le 1$ then a *fsts* (X, t^*) is fuzzy α - supra compact, iff (X, t^*_{α}) is α - supra compact.

Proof: Let (X, t^*) is fuzzy α - supra compact, Let $\mu = \{\mu_i : i \in \Lambda\}$ be a supra open cover of (X, t^*_{α}) . To show (X, t^*_{α}) is α - supra compact, we have to prove that every open cover has a finite sub cover. Since μ is a supra open cover of (X, t^*_{α}) then by definition of t^*_{α} there exist $x \in X$ and $\mu_i \in \mu$ be such that $\mu_i(x) > \alpha$. Again by definition of fuzzy α -supra compact of (X, t^*) each μ_i has a sub cover $\mu_{i=1}^{i=n}$, Hence (X, t^*_{α}) is α - supra compact.

Conversely let (X, t_{α}^*) is α -supra compact then by t_{α}^* shading it is clear that (X, t^*) is fuzzy α -supra compact.

REFERENCES

- Monsef, M.E.A. and Raman, A.E.: Fuzzy Supra topological spaces, Indian J. pure appl. Math, 18(4), pp 322-329, April, 1987
- Benchalli, S.S. and Siddapur, G.P.: On the Level Spaces of Fuzzy Topological Spaces, Bull of Math anal and Appl, Vol. 1, Issue 2, pp 57-65, 2009.

Lipschutz, S: General topology, Schaum Publication Company, New York, 1965

Lowen, R: Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 58, pp11-21, 1977