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ABSTRACT  

The aim of this paper is to introduce and study compactness in fuzzy supra topological spaces. Many properties 
and characterizations of this with concept have also been investigated.  

Keywords: Fuzzy supra Compact, Fuzzy supra topological space, Lower semi continuous functions, 𝛼-supra 
compact. 

1. INTRODUCTION 

In 1965 American mathematician Lotfi A. Zadeh introduced the notion of fuzzy set which has useful 
applications in various fields. The Fuzzy Supra topological space is a generalization and fuzzification of general 
Supra topological space. In this paper, we introduce compactness in fuzzy supra topological space and also 
establish a number of characterizations in this regard. 

Let X be a non-empty set, and let I = [0, 1]. Let IX denote the set of all mappings  : X  I. A member of IX is 
called a fuzzy subset of X. The union and intersection of fuzzy sets are denoted by the symbol   and   
respectively and defined by 

   i = max { i(x)| iJ and xX} 

  i =min { i(x)| iJ and xX} where J is an index set.  

Definition: 1.1. Let X be a non-empty set, and I = [0, 1]. A subfamily t* of IX is said to be fuzzy supra topology 
on X.(Monsef and Ramadan 1987) if  

(1) 0, 1  t* 

(2)  i  t* for all iJ then   i  t*. 

(X, t*) is called a fuzzy supra topological space, in short fsts. The elements of t* are called fuzzy supra open set 
and their complements are called fuzzy supra closed set. The lower semi continuous functions on XR is 

denoted by symbol L(μ
)and defined by L(μ

)={(x, r): μ
(x)>r} where    (t*)and Sup     , r

[0,  ]=I  , 𝛼 > 𝜖. 

Definition: 1.2. Let (X, t*
1 ), (Y, t*

2 ) be two fuzzy supra topological spaces. A mapping, f: (X, t*
1 )  (Y, t*

2 ) is 

called fuzzy supra continuous if the inverse image of each fuzzy supra open set in (Y, t*
2 ) is t*

1  fuzzy supra open 

in X. 

Definition: 1.3. Let X be a non-empty set and T* be a supra topology on X, and let t*= ( T*) be the set of all 
lower semi continuous functions from (X, T*) to I with usual topology(Lowen 1977). Thus  

t*= (T*) ={uIX :u-1(r, 1)   T*}, where r[0, 1)=I1. 

2. COMPACTNESS PROPERTY OF FSTS 

Definition: 2.1. Let (X, t*) be a fsts. A family F of fuzzy supra open sets is a cover of a fuzzy set  if and only 

if  {  i:  iF}. It is called a cover of X, if 
n

i 1
  i=1. 

Definition: 2. 2. A fuzzy supra topological space (X, t*) is fuzzy supra compact, if every supra open cover of X 
by the members of t* contains a finite sub cover, that is if  i  t* for all iJ, (J is an index set) then there are 

finitely many indices i1, i2, i3, i4, i5, i6, …. ,inJ such that 


n

J 1

  ij =1. 
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Definition: 2. 3. Let (X, t*) be a fsts. and  I. A collection T*  IX is said to be a fuzzy supra  -shading if 

and only if for every point xX there exist  T* such that  (x)>  . 

Definition: 2. 4. Let (X, t*) be a fsts. Let  I then (X, t*) is said to be  -supra compact if every fuzzy supra 
open  -shading of the space has a finite  -sub shading (Lowen, 1977). 

Theorem: 2.5. Let (X, t*) be a fuzzy supra topological space. Then the following conditions are equivalent. 

(1) { i }, i  J is a cover of X. 

(2) 
Ji

 i = 1 where i  J   x  X. 

(3)
Ji

  i =0 where i  J   x  X. 

Proof: (1)  (2). It is clear from the definition of a Cover, since {  i } ,  iJ is a cover of X means that  
Ji


 i =1,where i  J,   x  X. 

 (2)  (3) Since 
Ji
  i =inf { i } where i   J,   xX. 

      = 1- sup { i }, where iJ,   xX. 

      = 1-1=0. 

(3) (1) From (3) as above it can be shown that 
Ji
  i =1. Which implies that { i } is a cover of X. 

Theorem: 2.6. Let (X, T*), (Y, S*) are two fuzzy supra topological spaces, with (X, T*) fuzzy supra compact. Let 
f: XY be a fuzzy supra continuous surjection. Then (Y, S*) is fuzzy supra compact. 

 Proof: Let uiS* for each iJ with 
Ji
 ui =1.Since f is fuzzy supra continuous, so  

f 1
(ui)   T* .As (X, T*) is supra compact, we have for each xX, 

Ji
 f 1

 (ui ) (x) =1. 

So we see that { f 1
 (ui)}, iJ is a cover of X. Hence  finitely many indices i1, i2, i3, i4, i5, i6, …. inI such that 

Ji
 f 1

(u ij ) =1 . Let u be a fuzzy set in Y. Since f is a surjection we observe that for any yY 

 ))u((f f 1 (y) =Sup{ f 1
(u)(z): z  f 1

(y)} 

  = Sup{u (f (z)): f (z) = y} =u(y) 

so that  ))u((f f 1 = u . This is true for any fuzzy set in Y. Hence 

1= f (1) =f (
Ji
 f 1

(u ij  ) =
Ji
 f( f 1

(u ij ))  = 
Ji
  u ij .  

Therefore (Y, S*) is fuzzy supra compact  

Theorem: 2.7. Let (X, T*), (Y, S*) are two fuzzy supra topological spaces, and let f: X Y is a fuzzy supra 
continuous surjection. Let A is a fuzzy supra compact set in (X, T*). Then f(A) is also fuzzy supra compact in 
(Y, S*). 

Proof: Let B= {Gi : iJ }, where {Gi} be a fuzzy supra open cover of f(A). Then by definition of fuzzy supra 

continuity A= { f 1
(Gi):iJ}is the fuzzy supra open cover of A. Since A is fuzzy supra compact, then there 

exists a finite sub cover of A, that is Gik , k=1, 2, 3, ……… n, such that A
n

i 1
 f 1

(Gik ).  

Hence f(A) f (
n

i 1
  f 1

( Gik ))=
n

i 1
  f( f 1

( Gik ))
n

k 1
 Gik .  
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Therefore f (A) is fuzzy supra compact. 

Theorem: 2.8. Let (X, T*), (Y, S*) are two fuzzy supra topological spaces. Then the product (XY, * ) is fuzzy 
supra compact if and only if (X, T*) and (Y, S*) are fuzzy supra compact.  

Proof: First suppose that (XY,* ) where* = {GiHi: Gi  T* and Hi  S*} is fuzzy supra compact, then we 

can define a fuzzy continuous surjection mapping 1  and 1  from (XY,* ) to(X, T*) and (Y, S*) respectively. 

Now by the theorem 2.6; (X, T*) and (Y, S*) are fuzzy supra compact. 

Conversely, let (X, T*) and (Y, S*) are fuzzy supra compact. Since * ={GiHi : Gi  T* and Hi  S* for iJ} 
where Gi and Hi are fuzzy supra open set. We claim that {Gi: iJ } is a cover of X, and { Hi: iJ }is a cover of 
Y. That is if 

Ji
 Gi(x)=1 for all xX, and if 

Ji
 Hi(y)= 1 for all yY, then  

Ji
{(GiHi)(x, y)}=Sup{min{Gi(x), 

Hi(y)}}. Hence we have finite subset J/ of J for which 
Ji

 Gi(x)=1or 
Ji

 Hi(y)= 1. Hence we have * ={GiHi : 

Gi  T* and Hi  S* for iJ/}is a finite sub cover of (XY,* ). Hence (XY,* )is fuzzy supra compact. 

Corollary: 2.9. If ( x i ,i )iJ is a family of fuzzy supra compact topological spaces then (חiJ xi iJח , i ) 

is also fuzzy supra compact. 

Theorem: 2.10 The fuzzy supra topological space (X,  (t*)) is fuzzy supra compact if and only if (X, t*) is 
supra compact. 

Proof: Firstly suppose that (X, t*) is supra compact, let    (t*) be such that Sup     . Let the lower 

semi continuous functions L(μ
)={(x, r): μ

(x)>r} is an supra open set of XR, r[0,  ]=I  , 𝛼 > 𝜖 .Now 

Sup   L(μ
) X I  , we know that X   I   is supra compact. Hence   finite subfamily  1  , which 

covers X             (X,  (t*)) is fuzzy supra compact. 

Conversely, suppose fuzzy supra topological space (X,  (t*)) is a fuzzy supra compact. Then from definition of 

fuzzy supra compactness    1   and  i  1 such that Sup i= 1. Hence (X, t*) is supra compact. 

Theorem: 2.11. Let (X, t*) is a fuzzy supra topological compact space then there exist a fuzzy supra compact 
topology  (t*) in which every closed fuzzy set is also fuzzy supra compact. 

Proof: Let   and c   (t*), and   (t*) such that Sup     . Now c   (t*) 1-  (t*), 

hence the collection T( ) = {(x, r):  (x) <r} is fuzzy supra open in X I. 

Therefore T( )c is fuzzy supra compact. Choosing 𝜖 > 0  and taking μ
= + 𝜖 , we have  

Sup   L(μ
)T( )c  so there exist finite subfamily 0  of   such that Sup   L(μ

)T( )c.  So in  (t*) 

for which every closed fuzzy set is also fuzzy supra compact. Hence the proof of the theorem is complete. 

Theorem: 2.12. Let0  1 then a fsts (X, t*) is fuzzy  - supra compact, iff (X, t*
 ) is  - supra compact. 

Proof: Let (X, t*) is fuzzy - supra compact, Let= {  i:i } be a supra open cover of (X, t*
 ). To show 

(X, t*
 ) is  - supra compact, we have to prove that every open cover has a finite sub cover. Since   is a supra 

open cover of (X, t*
 ) then by definition of t*

  there exist xX and i0
  be such that i0

(x)> . Again by 

definition of fuzzy  -supra compact of (X, t*) eachi has a sub cover 

i
ni

1i
 , Hence (X, t*

 ) is  - supra 

compact. 

Conversely let (X, t*
 ) is  - supra compact then by t*

  shading it is clear that (X, t*) is fuzzy - supra 

compact. 
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