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ABSTRACT  

To obtain an optimal solution for any Transportation Problem (TP), the first step is to find an Initial Basic 
Feasible Solution (IBFS). A better IBFS requires fewer iterations to reach an optimal solution. The Least Cost 
Method (LCM) and Vogel’s Approximate Method (VAM) are commonly used approaches to finding IBFS due to 
their ease of implementation. Researchers frequently propose various methods to discover IBFS, but most of 
them are modifications of LCM or VAM. While VAM generally performs better, there are instances where it 
produces worse results compared to LCM and other approaches. Additionally, although researchers have 
developed new approaches, mainly modified versions of VAM, and demonstrated improved solutions with a few 
numerical instances, they have not yet identified the causes behind these results. The reasons for LCM and 
VAM's inability to obtain better IBFS have not been fully determined. This article aims to uncover the causes of 
pitfalls and the mechanisms of the allocation flow in both LCM and VAM through hypothetical and experimental 
domains. Several typical numerical instances have been conducted to demonstrate the causes of pitfalls and the 
allocation flow mechanisms of these methods. 

Keywords: Capacity, Cost Matrix, Least Cost method, Node, Transportation Problem, Vogel’s Approximate 
Method  

1. INTRODUCTION 

The Transportation Problem (TP) constitutes an important part of logistics management in the field of Industrial 
Production Management (IPM) system and it is also the emerging part of Linear Programing Problem (LPP) in 
the field of Operations Research (OR).  TPs have been widely studied not only in Applied Mathematics, but also 
in Computer Science, Industrial Operations Managements and so on. It is one of the fundamental problems of 
network flow problem which is usually used to minimize the transportation cost for industries with number of 
sources and number of destinations while satisfying the supply limits and demand requirements. TPs are 
frequently encountered in business arena too.  
 
The first and important step of TP is to find Initial Basic Feasible Solution (IBFS). It is well known that Simplex 
method (developed by G. B. Dantzig) is frequently used to solve LPPs including TPs (Hamdy, 2003). The first 
input of a Simplex method is an IBFS of TP. The procedure of finding IBFS that G. B. Dantzig used termed as 
North-West Corner (NWC) Rule by Charnes and Cooper (1954 to 1955) (see also Charnes and Cooper,1962). 
Dantzig’s procedure (NWC) for finding IBFS ignored transportation costs for the flow of allocations. But 
Dantzig developed an iterative procedure named Simplex method for obtained the optimal solution still to date 
very important tool to solve TPs as well as LPPs. It is worthwhile to mention here that the better IBFS used in 
Simplex method produces optimal solution rapidly.   Nowadays, several methods are available in the literature 
for finding IBFS of TP; but among them Least Cost Method (LCM) is relatively very simple to implement. 
Reinfeld and Vogel (1958) first proposed an algorithm named Vogel’s Approximation Method (VAM) on the 
basis of LCM in which the flow of allocations is determined by Distribution Indicator (DI) which is formed by 
the manipulation of transportation cost entries. It is known that VAM provides comparatively better IBFS. 
   
After VAM several approaches are developed by manipulating cost entries which are actually somehow the 
variants of VAM method. Few of them are mentioned here as a state of arts of this research field. Goyal (1984) 
proposed a modified VAM for run balanced transportation problems in which he modified the procedure to form 
Distribution Indicator (DI). Kirca and Satir (1990) developed a heuristic, called Total Opportunity-cost Matrix 
(TOM), to obtain an IBFS for the TP. Mathirajan and Meenakshi (2004) considered several variants of VAM 
approach for TPs. Korukoglu & Balli (2011) introduced the Total Opportunity-cost Matrix (TOM) rather than DI 
to control the flow of allocations.   Das et al. (2014) proposed Logical Development of Vogel’s Approximation 
Method (LD-VAM) to find IBFS for TP. Azad et al. (2017) and Amaliah et al. (2019) first developed Total 
Opportunity Cost (TOC) matrix and then they formed DI tableau for allocations by considering TOC. Besides, 
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Sharma & Bhadane (2016) proposed a modified NWC approach by using Statistical tool called Coefficient of 
Range (CoR). Very recently, some other modified approaches based on VAM approach are found in the 
publications of (Sumathi & Bama, 2018; Karagul & Sahin, 2020; Pratihar et al., 2020; Lekan et al., 2021).  On 
the other hand, Jamali et al. (2017) and Jamali & Akhtar (2018) proposed a new technique for controlling the 
flow of allocation named Weighted Opportunity Cost (WOC) matrix. The weighted opportunity cost matrix is 
formed by demand and/or supply as a weight factor corresponding to each transportation cost. They also 
considered some numerical instance to test the efficiency of the proposed algorithms. For finding IBFS of TPs, a 
good survey is observed in (Mathirajan et al., 2021). 
 
It is observed in the literature that many approaches are available in TPs to find IBFS.  Researchers are also 
continuously working on to develop more efficient approaches to find out better IBFS of TPs. But as far as we 
know, none of the approaches is the best for finding IBFS to solve all types of TPs. It is also observed in the 
literature that researchers have just proposed the approaches and shown improvement of the solutions by taking 
few selected instances. None of them find out the causes of the flow of allocation procedures for superiority of 
the proposed approach. It is also noticed that all the existing approaches are developed only based on numerical 
instances. 
 
In this study, two frequently used approaches, namely LCM and VAM, will be considered to analyze the causes 
of pitfalls and the mechanisms of the flow of allocation procedures. To find out the drawbacks and mechanisms 
of the flow of allocations in these approaches, we will perform numerical experiments. We will consider some 
typical numerical instances and investigate their flow of allocation procedures to discover the cases of 
superiority and/or falling into pitfalls 

2. MATHEMATICAL MODEL OF TRANSPORTATION PROBLEM 

The mathematical model of TP expressed in LP model as follows:  
Minimize  
 

ijij
n
j

m
i xcZ   11                                                                                                              (1) 

 
subject to 
 

;1 iij
m
i ax   i = 1, 2,.…, m (supply constraints)                                                                    (2)

;1 jij
n
j bx    j = 1, 2,.…, n (demand constraints)                                                                    (3) 

njmibax jiij ,,2,1;,,2,1;0;0;0                                             (4) 

 
where, Z: Total transportation cost to be minimized, which is the objective function, 
cij : Unit transportation cost of the commodity from each source i to destination j,

 
xij : Number of units of commodity sent from source i to destination  j, 

ia : Number of commodities to be supplied from source i, 

jb : Number of commodities required to destination j. 

In brief, constraints (2) and (3) are called Capacity constraints whereas constraints (4) are called non-
negative Restrictions conditions.  
 
As TP is a special type of LP problems in which commodities are transported from a set of sources to a set of 
destinations such that the total cost of transportation is minimized. By taking the special characteristics of TP, it 
can be designed as an especial tableau called Transportation Tableau (TT). The typical view of TT is shown in 
the Table 1. In the TT, Oi indicates ith source with amount of availability is ai which is shown in the far-right 
column. On the other hand, Dj denotes jth destination with demand bj, which is shown in the bottom row of TT.  
In this table, there is an m×n matrix containing cost entries. The cell in ith row and jth column is called (i,j) th 
cell and is denoted as cij, which represents the unit shipping cost from ith source to jth destination. So, a TT be 
can be viewed as a (m+1) × (n+1) matrix. 
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Table 1: A TT of a TP with m Origins and n Sinks. 

 Sinks/Destinations 
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O1       
O2       
O3       

       
Om       
Demand       

3. ANALYSIS OF LCM AND VAM  

3.1 Algorithm LCM and VAM 

Before analyze the algorithms, it is worthwhile to present the algorithms of the LCM and VAM. 

Algorithm of Least Cost Method (LCM) 

Step 1: Find the smallest transportation cost available in TT and select the corresponding route. (Note: In   
case, if there are more than one smallest cost, select the cells where maximum allocation can be 
made) 

Step 2: Supply commodity as much as possible to the cell (route) corresponding to that minimum cost.   
Step 3: Cross out that row/column (the routes) of the TT which has exhausted. It is noted that cross out 

row/column (the routes) has no chance to carry goods further as all possible amount of goods has 
been shipped/ received. 

Step 4: Test whether all commodities are shipped or not. If not go to step 1 otherwise  
Step 5: Stop.  
Step 6: Find IBFS. 

Algorithm of Vogel’s Approximate Method (VAM)  

Step 1: For each row (column), determine Distribution Indicator (DI)/penalty measure by subtracting the 
smallest unit cost element in the row (column) from the next smallest unit cost element in the same 
row (column). 

Step 2: Identify the row or column with the largest penalty, breaking ties arbitrarily.  
Step 3: Allocate as much as possible to the variable with the least unit cost in the selected row or column.  
Step 4: Adjust the supply and demand, and cross out the satisfied row or column. If a row and column are 

satisfied simultaneously, only one of the two is crossed out, and the remaining row (column) is 
assigned zero supply (demand). 

Step 5:(a) If exactly one row or column with zero supply or demand remains uncrossed out, stop. 
(b)  If one row (column) with positive supply (demand) remains uncrossed out, determine the basic 

variables in the row (column) by the least cost method. Stop. 
(c)  If all the uncrossed-out rows and columns have (remaining) zero supply and demand, determine 

the zero basic variables by the least cost method. Stop. 
(d)  Otherwise, go to step-1.  

Step 6: Find IBFS. 

3.2   HYPOTHETICAL ANALYSIS OF THE ALGORITHMS OF LCM AND VAM 

It is observed that the LCM algorithm is straightforward–what will be the amount of supply/ demand the 
algorithm does not care about it at all. The algorithm only observes the amount of transportation cost at each cell 
(route) of the cost matrix. It also does not care about the differences among cost entries in the cost matrix. LCM 
considers only the current cost of each cell of the reduced cost matrix (if any allocation is done). 
 
So, LCM always seeks the route in which Transportation Cost (TC) is minimum at present, what will be the next 
scenario it does not care at all. It also does not care what amount of available commodity – small or large – is in 
the nodes. So, LCM is straightforward. It also needs less computation effort than VAM and other approaches 
modified from VAM and LCM.  But it is observed that VAM gets better IBFSs than LCM in most instances. But 
why?  
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There may arise two cases in which LCM give worse IBFS, one is the pattern of cost matrix of transportation 
another one is the pattern of capacity distribution among the nodes. Here we have discussed about the first one. 

(a) Sometimes, LCM is bound to close some better routes, and as a result, it is forced to choose worse routes in 
later allocation procedures. 

When LCM allocates from the source to the sink along the route having the minimum TC, unfortunately, it 
closes some better routes from that source to other sinks since the source is exhausted and cannot allocate any 
more to any other sink. Similarly, it closes some better routes to that sink from other sources as the sink is 
exhausted and cannot receive any more from any other source. That is why the algorithm is bound to choose a 
route from another source with a large amount of TC compared to the routes closed for previous allocations. The 
algorithm is also bound to choose a route to another sink that has a large amount of TC compared to routes that 
have been closed in previous allocations. This situation may occur due to the following circumstances. 
 
Let the minimum value of TC, in the cost matrix (reduced cost matrix), is along the route from source Oi to sink 
Sj. All the TCs along the routes from Oi to any other sinks are not relatively large compared to that minimum 
value (i.e., all TCs from Oi are near to minimum value), and all TCs along the routes for any source to sink Sj is 
not also large. In addition, there are some routes from other sources to some sinks have TCs but vary highly. In 
this situation, LCM frequently gets pitfalls and produces worse IBFS. Similarly in the reverse case (interchange 
of sink and source) same situation will be occurred. This phenomenon will be explored numerically in section 
4.1. 
 
Now, VAM is an improved version of the LCM that generally, but not always, produces better IBFS. The 
algorithm of VAM also does not account whatever the demand/supply of each node during the allocation 
procedures.  But VAM does not allocate immediately to the route which has minimum TC like LCM. During 
allocation procedures it does not observe only TC of each cell but also carefully counts the differences among 
TCs especially difference between minimum and nearest minimum TCs for each node (i.e., each row and each 
column) in TT (reduced TT) before each step of allocations. So, in step 1, VAM algorithm first finds out the 
difference of TCs between minimum and nearest minimum TCs of routes for each node (sink or source) which 
are denoted as Distribution Indicator (DI). 
 
Then, in step 2, the algorithm finds out the largest DI value among all DI values. It then identifies the route with 
the minimum TC among the routes of the nodes that have the largest DI value. After identifying the route, the 
VAM algorithm allocates commodities as much as possible, similar to LCM, along that route. It is noted that this 
procedure is continued for each step in the reduced TT. That is, the procedure is repeated for each reduced TT 
until all commodities are allocated. With this modification, VAM can overcome the pitfalls that LCM frequently 
faces - being bound to close better routes with small TC. 
 
If the route having the lowest TC corresponding to this node is crossed out before allocation through the node 
that has the largest DI value route, then the algorithm is bound to allocate through the route with a very large TC 
corresponding to that node, which is frequently faced by the LCM approach. Moreover, if the DI value 
corresponding to the node having the smallest TC (among all routes of TP) is low and the routes of this node are 
crossed out, then VAM may be able to allocate the routes corresponding to this node with a smaller TC as its DI 
values are low. This phenomenon will be explored numerically in section 4. 
 
Though VAM is frequently able to find out better solutions compared to LCM, in some instances, it fails to 
obtain better solutions compared to LCM and other approaches. This occurs due to the pattern of the cost matrix 
and the distribution of capacity. Here, we will discuss the pattern of the cost matrix, which may lead to VAM 
producing worse IBFS compared to LCM. 
 
Let the minimum value of TC, in the cost matrix (reduced cost matrix), is along the route from source Oi to a 
sink. Also let the largest DI value corresponds to a sink node Dj in which the smallest TC is relatively large 
enough compared to the overall minimum TC value and which is corresponding to the source node Oi.  So, 
VAM bounds to allocate to the sink node Dj from the source node Oi. In this circumstances source node Oi is 
never able to allocate along the route in which TC is minimum. Similarly in the reverse case (interchange of sink 
and source) same situation will be occurred. This phenomenon will be explored numerically in section 4.2.  



Journal of Engineering Science 14(1), 2023, 123-135                                                                                        127 

 
 
4. NUMERICAL EXPERIMENTS 

4.1   Illustrating How Least Cost Method (LCM) Produces Inferior Initial Basic Feasible Solutions (IBFS) 
Compared to Vogel's Approximation Method (VAM) 

At first, we will numerically demonstrate how LCM get pitfalls for the specific pattern of cost distribution matrix 
in TT. For this purpose, we have considered a typical numerical instance – Example 1 given in Table 2.  
 
Example 1: 
 

Table 2: Transportation Tableau of a transportation problem, Example 1. 
 

 D1 D1 D1 Supply 
O1 3 10 15 20 
O2 1 4 2 20 
O3 5 6 8 20 

Demand 20 20 20  
 
Before starting the allocation procedure through LCM or VAM approaches, it is worthwhile to analyze the 
scenario of the typical Example 1 shown in Table 2. The problem has three sources and three sinks. Each node 
has equal capacity i.e., 20. We choose such capacity to confirm the equal tendency of flow regarding node 
capacity. That is, each node has no influence regarding the amount of availability/necessity of commodities. As 
the amount of commodity is equal for each node so differences in total transportation cost for each approach are 
only due to Transportation Cost (TC). 
 
It is observed in the Table 2 that TC from source O2 are small and difference for any two sinks are also not so 
large. It is also noticed that TCs from source O3 are a bit large but differences are relatively small. On the other 
hand, the TC along the route from O1 to D1 is small but along the routes O1 to other sinks D2   and D3 are very 
large. Also, from the source O1, the difference of transportation cost along the routes D1 and (nearest smaller TC) 
D2 is very large. 
 
Now, first, we will apply the LCM approach to find the Improved Basic Feasible Solution (IBFS) and the 
corresponding total cost. For this purpose, we consider Example 1. The allocation procedures are given step by 
step for each allocation. It is worthwhile to mention here that, although LCM does not require DI, we will still 
show DI in each step for the sake of explanations. It is observed that LCM finds that  the route from O2 to D1 has 
minimum TC compared to all routes in this TT. So, LCM immediately allocates as much as possible to D1 from 
O2. After first allocation, the scenario is shown in Table 3. 
 

Table 3: LCM approach, after Step 1. 

 D1 D2 D3 SUPPLY DI 
O1 3 

     × 
10 15 20 7 

O2 1 
    20 

4 
      × 

2 
      × 

20 1 

O3 5 
    × 

6 8 20 1 

DEMAND 20 20 20   
DI 2 2 6   

 

 

 

 

 

Table 4: LCM approach, after Step 2. 
D1 D2 D3 S DI 

3 
     × 

10 
      × 

15 20 7 , 5 

1 
     20 

4 
     × 

2 
    × 

20 1 

 6 
    20 

8 
    × 

20   1, 2 

20 20 20   
2 2, 4 6, 7   
 

Table 5: LCM approach, after Step 3. 
 D1 D2 D3 S DI 

O1 3 
     × 

10 
      × 

15 
     20 

20 7 , 5 

O2 1 
     20 

4 
     × 

2 
    × 

20 1 

O3 5 
    × 

6 
    20 

8 
     5 

5 1, 2 

D 20 20 20   
DI 2 2, 4 6, 7   
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After first allocation, it is observed that all routes from source O2 are exhausted as its all commodities are 
allocated to the sink D1 which is also exhausted. As all the routes from O2 are exhausted, so sinks D2 and D3 
need to supply from other sources namely O1 and O3.  Therefore, the sinks D2 and D3 bound to choose worse 
routes which have relatively larger TC values whereas routes O2 to D2 and O2 to D3 had smaller TC cost but now 
exhausted. On the other hand, as sink D1 is exhausted so the sources O1 and O3 have no any possibility to supply 
to the sink D1 anymore. Therefore, the sources O1 and O3 bound to choose worse routes which have relatively 
larger TC values whereas routes O1 to D1 and O3 to D1 had smaller TC cost relative to the present available 
routes but now exhausted. So, for second allocation LCM choose the route O3 to D2 as it corresponds to 
minimum TC i.e. 6 in reduced TT given it Table 4.  So, after second allocation the scenario is shown in Table 4. 
After second allocation, it is observed that the sources O2 and O3 are exhausted. Also, the routes to sinks D1 and 
D2 are exhausted. So, the sink D3 bounds to choose worst route i.e., O1 to D3 with largest TC i.e. 15. As a result, 

the total transportation costs become very large. After third allocation the reduced TT is shown in the Table 5. 
 

Table 6: LCM approach, Step 3. 

 D1 D2 D3 SUPPLY 
O1 3 

     0 
10 

      0 
15 

     20 
20 

O2 1 
     20 

4 
     0 

2 
     0 

20 

O3 5 
    0 

6 
    20 

8 
     5 

5 

DEMAND 20 20 20  
 
As all commodities are allocated so LCM algorithm is terminated.  Table 6 gives the IBFS of the problem for 
LCM approach. Therefore, the total transportation cost for this IBFS is: 
 

Total Cost= 1×20+6×20+15×20 =440. 
 

Now we have found IBFS of this problem by VAM. The first Step of VAM algorithm is to find out DI for each 
row source node and each column sink node. It is noted that DI is the difference of TC between minimum and 
nearest minimum to each row/column. The DI value corresponding to each node is show in DI row/column of 
the Table 6.  
 
It is observed that the DI value (difference of transportation cost between two routes) corresponding to the 
Source O1 is 7 which is the differences of TC between the two routes (i) O1 to D1 and (ii) O1 to D2. This is the 
largest DI value among all DI values either from sources or sinks. It is noticed that among all the routes from all 
sources to all the sinks, the minimum TC is 1 which along the route from O2 to D1. Moreover, the DI value for 
source O2 is 1 and for sink D1 is 2 which small compare to DI value 7.  It is also observed that the second smaller 
transportation cost from source O2 is 2 which are very near to value 1 and which is from source O2 to sink D3. As 
the DI value for the routes from O1 (i.e., row 1) is highest, so VAM searches minimum TC among the routes 
from O1 (i.e., in row 1). Now, it is observed in the TT that the transportation cost from the single source O1 to the 
sinks D1, D2 and D3 are 3, 10 and 15 respectively. So, minimum TC from source O1 is 3 and its route is from O1 
to D1. That is why VAM algorithm chooses the route O1 to D1 rather than the route O2 to D1. 

 

Table 7: VAM approach, finding DI. 

 D1 D2 D3 S DI 

O1 3      10     15    20 7 

O2 1      4      2      20 1 

O3 5      6 8 20 1 

D 20 20 20   

DI 2 2 6   

 

Table 8: VAM approach, after Step 1. 
 D1 D2 D3 S DI 

O1 3     
20 

10 
    × 

15 
    × 

20 7 

O2 1 
     × 

4 
      

2 
      

20 1 

O3 5 
     × 

6 8 20 1 

D 20 20 20   
DI 2 2 6   
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So, in first step, VAM algorithm allocates commodities as much as possible along the route O1 to D1 which is 
obviously 20 units and whose TC per unit is 3 rather than the route O2 to D1 who’s TC per unit is 1. So, after first 
allocation, the reduced TT is shown in Table 8. It is observed in the table 8 that after first allocation, the routes 
form source O1 are exhausted and also the sink D1 does not need any more allocation. It is also observed that the 
route containing minimum TC i.e., the route from the source O2 to destination D1 is now exhausted in which TC 
is 1.  But it is observed that there exist some more routes for the source O2 with small TC that is near to 1, since 
DI value for the source O2 is 1.  
 
Now for preparing second allocation, algorithms develop new DI vectors from reduced TT given in Table 9. It is 
observed the DI value corresponding to the sink D3 is highest which is 6. It is also observed that the 
transportation cost to sink D3 is lowest along the route O2 to D3. So, VAM choose the route O2 to D3 and 
allocates as much as possible along this route which is off course 20 units. After second allocation the reduced 
TT is shown in Table 10.  It is observed in Table 10 that only routes from O3 to the sink D3 is unallocated. So, 
the rest all 20 units are allocated from the source O3 to the sink D3. So, the final scenario is shown in Table 11. 
Therefore, IBFS is shown in Table 12 and corresponding total transportation cost of the IBFS is followed by the 
table 12.   
 

 
Total Cost = 3x20+2x20+6x20 = 220 

 
Table 13: Comparison between LCM and VAM approaches for finding IBFS. 

Allocation 
Step 

1 2 3 Total 
Cost 

Opt. 
cost 

Iteration 

Approach IBFS DI cost IBFS DI cost IBFS DI cost    
LCM x21 1 1 x32 2 6 x13 -- 15 440 220 3 
VAM x11 7 3 x23 6 2 x32 -- 6 220 220 1 

Table 10: VAM approach, after Step 2. 
 D1 D2 D3 S DI 
O1 3 

     20 
10 
    × 

15 
      × 

20 7 

O2 1 
     × 

4 
     × 

2 
    20   

20 1, 2 

O3 5 
     × 

6 
     

8 
      × 

20  1, 2 

D 20 20 20    
DI 2 2, 2 6, 6   

 

Table 9: VAM approach, finding DI, after Step 
3. 
 D1 D2 D3 S DI 
O1 3 

     20 
10 
    × 

15 
    × 

20 7 

O2 1 
     × 

4 
     × 

2 
    20   

20 1, 2 

O3 5 
     × 

6 
 

8 
× 

20 1, 2 

D 20 20 20   
DI 2 2, 2 6, 6   
 

Table 11: VAM approach, after Step 6. 
 D1 D2 D3 S DI 

O1 3 
     20 

10 
    × 

15 
     × 

20 7 

O2 1 
      × 

4 
    × 

2 
    20   

20 1, 2 

O3 5 
     × 

6 
20 

8 
     × 

20  1, 2 

D 20 20 20    

DI 2 2, 2 6, 6   

 

Table 12: VAM approach, IBFS. 
 D1 D2 D3 SUPPLY 

O1 3 
     20 

10 
    0 

15 
    0 

20 

O2 1 
     0 

4 
     0 

2 
    20   

20 

O3 5 
     0 

6 
20 

8 
0 

20  

DEMAND 20 20 20   
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Figure 1: Comparison between LCM and VAM approaches for finding IBFS regarding step of allocations vs. 

unit cost for Example 1. 

The intensive comparison of the allocation procedures of the two approaches is concisely shown in Table 13. It 
is noticed in Table 12 that the total cost in IBFS of the VAM approach is much cheaper compared to that of the 
LCM approach. It is observed in the table that there is only one common basic solution for both approaches, 
which is x32. It is remarked that the DI values of VAM are always higher than those of LCM. Additionally, it is 
noted that the IBFS obtained by VAM is also the optimal solution, whereas LCM needs three additional 
iterations to obtain the optimal solution. The comparison of the flow of allocation between LCM and VAM 
regarding the step of allocation versus unit transportation cost is shown in Figure 1. It is observed in Figure 1 
that the unit cost is gradually increasing concerning the number of steps of allocations in the VAM approach, 
whereas the unit cost is rapidly increasing concerning the number of steps of allocations in the LCM approach. 
From this numerical analysis it may conclude that when any node contains small TC and also DI value 
corresponding this node is also small then LCM falls in a pitfall.  

4.2   Illustrating How VAM Produces Inferior Initial Basic Feasible Solutions (IBFS) Compared to LCM 

Now, Example 2 (see Table 14) will be considered to analyze the performance of the above approaches, as 
shown in Table 14. 
Example 2: 
 

Table 14: Transportation Tableau of another transportation problem, Example 2 

 D1 D2 D3 SUPPLY 
O1 2 5 8 20 
O2 6 4 14 20 
O3 15 12 13 20 

DEMAND 20 20 20  
 

Before analyzing the performance of the approaches, we would like to mention the peculiarities of this Example 
2. The problem has three sources and three sinks, and each node has an equal capacity of 20. We have 
deliberately chosen this capacity to ensure that each node has no influence regarding the amount of 
availability/necessity of commodities. As the amount of commodity is equal for each node, the differences in the 
total transportation cost for each approach are solely due to the Transportation Cost (TC). 
 
It is observed in the Table 14 that TCs from source O1 are small and difference of TCs for any two sinks are also 
not so large. It is also noticed that TCs from source O2 and O3 are a bit large but differences of TCs among the 
routes are not also so large. On the other hand, the TCs along the route to the sink D3 is relatively large. It is also 
noticed that the DI corresponding to the sink D3 is largest and minimum TC along the route to sink D3 is also 
relatively larger compared to minimum TC among all the routes in the whole problem.   
 
Now we will find IBFS step by step by using LCM approach. Though LCM does not care about DI values but 
for the sake of explanations we will show DI in each step. IT is observed in the Table 14 that the minimum TC is 
2 along the route O1 to D1, so in first LCM allocates as much as possible along the route O1 to D1. After 1st 
allocation the reduced TT is shown in the Table 15.  
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It is observed in reduced TT, shown in Table 15, that the minimum TC is 4 along the route O2 to D2. So, in 
second step of allocation LCM allocates as much as possible along the route O2 to D2. After second allocation 
the reduced TT is shown in the Table 16. It is observed that after second allocation, only route from O3 to D3 is 
unallocated so in third step of allocation, LCM allocates along that route. After third step of allocation the, LCM 
algorithm is terminated. After third allocation the scenario of TT is shown in the Table 17. Therefore, the IBFS 
of the problem is shown in the Table 18 and corresponding total transportation cost is given below.  
 

Total Cost = 2x20 + 4x20 +13x20 = 380. 
 

 

 

 

 

 

 
It is worthwhile to mention here that LCM has allocated commodities to sink D3 from source O3 with larger TC, 
13 compare to TC 8 but sinks D1 and D2 have gotten commodities with very smaller TCs namely 2 and 4 
compared other TCs in the TT. Eventually LCM approach is able to find out IBFS with lowest total 
transportation cost and this is also optimal solution. 
 
Now we will apply VAM approach to find out the IBFS of the problem.  The first Step of VAM algorithm is to 
find out DI for each row (source node) and each column sink node). The DI value corresponding to each node is 
show in DI row/column   of the Table 16. It is observed that the DI value (difference of transportation cost 
between two routes) corresponding to the sink D3 is 5 which differences of TC between the two routes (i) O1 to 
D3 and (ii) O2 to D3. This the largest DI value among all DI values either from sources or sinks. It is noticed that 
among all the routes from all sources to all the sinks, the minimum TC is 2 which along the route from O1 to D1. 
Moreover, the DI value for source O1 is 3 and for the sink D1 is 4 which small compare to DI value 5.  It is also 
observed that there are many smaller TCs are available {2, 5, 4, 6} in the TT compared to the minimum TC to 
the route D3 whose DI value is largest. As the DI value for the sink D3 (i.e. column 3) is highest, so VAM 
algorithm searches minimum TC among the routes to the sink D3 (i.e. in column 3). Now, it is observed in the 
TT that the transportation cost to the single sink D3 to the sources O1, O2 and O3 are 8, 13 and 14 respectively. 
So, minimum TC to the sink D3 is 8 and its route is from O1 to D3. Eventually, VAM algorithm chooses the route 
O1 to D3 whose TC is 8 rather than the route O1 to D1 whose TC is only 2. 

 
Table 19: VAM approach, finding DI for each node.  

 D1 D2 D3 SUPPLY DI 
O1 2 5 8 20 3 
O2 6 4 14 20 2 
O3 15 12 13 20 1 

DEMAND 20 20 20   
DI 4 1 5   

Table 16: LCM approach, after Step 2. 
 D1 D2 D3 S DI 
O1 2 

20 
5 
  × 

8 
   × 

20 3 

O2 6 
  × 

4 
20 

14 
   × 

20 2,10 

O3 15 
  × 

12 
   × 

13 
 

20  1,1 

D 20 20 20   
DI 4 1,8 5,1   

Table 15: LCM approach, after Step 1. 

 D1 D2 D3 S DI 
O1 2 

20 
5 
  × 

8 
  × 

20 3 

O2 6 4 14 20 2 
O3 15 

  × 
12 
  × 

13 
 

20  1 

D 20 20 20   
DI 4 1,8 5,1   

Table 18: LCM approach, IBFS. 
 D1 D2 D3 S DI 
O1 2 

20 
5 
0 

8 
0 

20 3 

O2 6 
0 

4 
20 

14 
0 

20 2,10 

O3 15 
0 

12 
0 

13 
20 

20  1,1 

D 20 20 20   
DI 4 1,8 5,1   

Table 17: LCM approach, after Step 3. 
 D1 D2 D3 S DI 
O1 2 

20 
5 
  × 

8 
  × 

20 3 

O2 6 
  × 

4 
20 

14 
  × 

20 2,10 

O3 15 
  × 

12 
  × 

13 
20 

20  1,1 

D 20 20 20   
DI 4 1,8 5,1   
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So, in first step, VAM algorithm allocates commodities as much as possible along the route O1 to D3 which is 
obviously 20 units and whose TC per unit is 8. So, after first allocation, the reduced TT is shown in Table 20. It 
is observed in the Table 20 that after 1st allocation the routes form source O1 are exhausted and also the sink D3 
does not need any more allocation. It is also observed that the route containing minimum TC i.e., the route from 
the source O1 to destination D1 is now closed for further allocation. Also, the route containing smaller TC i.e., 
the route from the source O1 to destination D2 is also closed for further allocation. It is notice that TC from 
source O1 to destination D1 and D2 are less than the TC from source O1 to destination D3. Now, it is observed 
that there exist some more routes for the source O2 to destination D1 and D2 with smaller TC namely 6 and 4 but 
DI value for the source O2 is only 2. Before second allocation, VAM again find out new DI value from reduced 
TT which is shown in the Table 21. It is observed that sink D1 has largest DI value which is 9. So, VAM chooses 
destination D1 for next allocation. It is also observed that among all the routes from any source to sink D1, the 
route from source O2 to sink D1 has a minimum TC, and its amount is 6. So, in the second allocation, VAM 
allocates as much as possible to sink D1 from source O2. After the second allocation, the reduced TT is shown in 
Table 22. 

 

 

 

 

 

 

 

 

Table 24: VAM approach, IBFS. 

 D1 D2 D3 SUPPLY DI 
O1 2 

0 
5 

0 
8 

20 
20 3 

O2 6 
20 

4 
0 

14 
0 

20 2, 2 

O3 15 
0 

12 
20 

13 
0 

20  1, 3 

DEMAND 20 20 20   
DI 4, 9 1, 8 5   

 

It is observed in the Table 21 that, though the minimum TC is 4 along the route O2 to D2 but VAM chooses the 
route O2 to D1 for second allocation whose TC is larger. After second allocation only the route O3 to D2 is open. 
So, in third allocation, VAM allocates all the remain commodities along this route. After third allocation the 
algorithm is terminated. After third allocation the scenario of TT is shown in the Table 20. Therefore, the IBFS 
of the problem is shown in the Table 21 and corresponding total transportation cost is given below.  

Table 20: VAM approach, after first allocation -Step 1. 

 D1 D2 D3 S DI 
O1 2 

 × 
5 
 × 

8 
20 

20 3 

O2 6 4 14 
 × 

20 2 

O3 15 12 13 
 × 

20  1 

D 20 20 20   
DI 4 1 5   

Table 21: VAM approach, finding DI in reduced TT. 
 D1 D2 D3 S DI 

O1 2 
   × 

5 
   × 

8 
20 

20 3 

O2 6 4 14 
 × 

20 2, 2 

O3 15 12 13 
 × 

20  1, 3 

D 20 20 20   
DI 4, 9 1, 8 5   

Table 23: VAM approach, after 3rd allocation -   
Step 3. 

 D1 D2 D3 S DI 

O1 2 
  × 

5 
  × 

8 
20 

20 3 

O2 6 
20 

4 
   × 

14 
  × 

20 2, 2 

O3 15 
   × 

12 
20 

13 
  × 

20  1, 3 

D 20 20 20   

DI 4, 9 1, 8 5   

 

Table 22: VAM approach, after 2nd 
allocation – Step 2. 

 D1 D2 D3 S DI 

O1 2 
   × 

5 
   × 

8 
20 

20 3 

O2 6 
20 

4 
   × 

14 
  × 

20 2, 2 

O3 15 
   × 

12 13 
  × 

20  1, 3 

D 20 20 20   

DI 4, 9 1, 8 5   
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            Total Cost = 8x20 +6x20 +12x20 = 520 

 
Table 22: Comparison between LCM and VAM approaches for finding IBFS. 

Allocation 
Step 

1 2 3 Total 
Cost 

Opt. 
cost 

Iteration 

Approach IBFS DI cost IBFS DI cost IBFS DI cost    
LCM x11 4 2 x22 10 4 x33 -- 13 380 380 1 
VAM x13 5 8 x21 9 6 x32 -- 12 520 380 3 

 
The intensive comparison of the allocation procedures of the two approaches is concisely shown in Table 22. It 
is noticed in Table 22 that the total cost in the IBFS of the LCM approach is much cheaper compared to that of 
the VAM approach. It is also observed in the table that there is no common basic solution for both approaches. 
Additionally, it is noticed that the DI values of VAM are not always higher than those of LCM. It is remarked 
that the IBFS obtained by LCM is also the optimal solution, whereas VAM needs 3 more iterations to obtain the 
optimal solution. 

 
Figure 2: Comparison between LCM and VAM approaches for finding IBFS regarding step of allocations vs. 

unit cost for Example 1. 
The comparison of the flow of allocation between LCM and VAM regarding the step of allocation versus unit 
transportation cost is also shown in Figure 2. It is observed in Figure 2 that the unit transportation cost is 
gradually increasing with respect to the number of steps of allocations in LCM. Additionally, in the initial two 
steps among the three steps, the TC of the LCM approach is much smaller than those of VAM. It is also noticed 
that in both approaches, the unit cost rapidly increases. However, in the last step, the unit cost of LCM is larger 
than that of VAM, but both TCs are very close. 
 
From this numerical analysis, it may be concluded that when any node contains a larger TC, and the 
corresponding DI value corresponding to this node is also the largest, then VAM may fall into a pitfall. 
Additionally, from this numerical analysis, it may be concluded that when the differences among the TCs are 
similar, then LCM is better as it needs less computational cost compared to VAM and/or its variants. 
 
5. CONCLUSION  

LCM and VAM are the most frequently used methods to find out Improved Basic Feasible Solutions (IBFS). 
LCM is very easy to implement and computationally much cheaper. On the other hand, though in general, VAM 
performs better, sometimes it produces worse results too. In this article, we have discussed the inside views of 
the flow of allocations of both LCM and VAM algorithms roughly. We have also pointed out why and when 
LCM and VAM fall into pitfalls and produce worse IBFS. Numerically, we have also demonstrated why and 
when LCM and VAM encounter pitfalls to find IBFS. From these hypothetical as well as numerical analyses, it 
may be concluded that LCM may fall into a pitfall when: 
 

(i) There exist some routes from (or to) any node containing the smallest TCs, and the DI value 
corresponding to this node is also small. 

(ii) There exist some other routes from (or to) any (or more) node(s) that have large DI values with smaller 
TC but not the smallest. 
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Again, VAM may fall into a pitfall when: 
The minimum value of TC (in the cost matrix/reduced cost matrix), is along the route from source Oi to a sink 
other than sink Dj and the largest DI value corresponds to a sink node Dj in which the smallest TC is relatively 
large enough compared to the overall minimum TC value and this smallest TC is along the route from Oi to Dj. 
Then VAM bounds to allocate to the sink node Dj from the source node Oi. In these circumstances, source node 
Oi is never able to allocate along the route in which TC is minimum. Similarly, in the reverse case (interchange 
of sink and source), the same situation will occur. 
 
It is noted that when all DI values of the TT are similar, both LCM and VAM almost always produce similar 
IBFS. Since LCM is very easy to implement and computationally much cheaper than any other existing 
approaches (except the NWC approach, which produces a worse solution), researchers may exploit these 
phenomena to develop much better modified LCM algorithms in the future. On the other hand, VAM, in general, 
obtains improved IBFS, so by exploiting these phenomena, researchers may also develop much better modified 
VAM approaches in the future. 
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