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ABSTRACT 

A degenerate quantum plasma system (DQPS) consisting of arbitrary number of degenerate light (electron, 
proton, neutron, etc.) and heavy (light nuclei/element, heavy nuclei/element, etc.) particle species is considered 
to investigate the spherically symmetric perturbation (both linear and nonlinear) of self-gravitational field. The 
fundamental characteristics (amplitude, width, etc.) of small amplitude self-gravitational potential structures, 
which are found to be formed in the considered plasma system, are examined by the reductive perturbation 
technique. The derivation and numerical analysis of the modified Korteweg-de Vries (mKdV) equation are 
obtained. The analytical results are applied in astrophysical compact objects like white dwarfs and neutron 
stars, which are the examples of DQPS. 
 

Keywords: Compact objects, Degenerate pressure, Nonlinearity, Relativity, Self-gravitational perturbation, 
Solitary waves. 

1. INTRODUCTION 

Nowadays, wave phenomena in dense degenerate quantum plasma have received a considerable attention 
because of its   ubiquity in many astrophysical compact objects.  As the density of a classical plasma increases, 
or its temperature decreases, it can enter a regime when the quantum nature of its constituent particles starts to 
affect its macroscopic properties and dynamics, and such plasmas are then called quantum plasmas. This 
quantum plasma system which contains degenerate fermions (e.g., electrons) is known as DQPS. The 
astrophysical compact objects like white dwarfs, neutron stars and black holes are the examples of 
aforementioned plasmas, where matters exist in extreme conditions (Chandrasekhar, 1931; Chandrasekhar, 
1931a; Chandrasekhar, 1935; Garcia-Berro et al., 2010; Koester and Chanmugam, 1990; Shapiro and 
Teukolsky, 1983). 

 
Many researchers (Brodin and Marklund, 2007; Haas, 2007; Hossen and Mamun, 2015; Hossen and Mamun, 
2014; Hossen et al., 2014; Marklund and Brodin, 2007; Marklund et al., 2007; Masood et al., 2010; Manfredi, 
2005; Misra and Samanta, 2008; Misra et al., 2010; Shukla and Eliasson, 2006; Shukla and Eliasson, 2007) 
studied the propagation of electrostatic excitations (in the form of solitary waves, shock structures, double 
layers, etc.) in a plasma system (which follows the laws of quantum mechanics) by considering only the light 
particles as the degenerate particle. In our previous paper (Asaduzzaman, 2017) we also considered a plasma 
system where electron (light particle) was only degenerate. In our present work, we consider a general DQPS 
consisting of arbitrary number of light particle species s and heavy particle species j in which both light and 
heavy particle species are degenerate. We want to investigate here the basic characteristics of linear and 
nonlinear self-gravitational potential structures (SGPS) by assuming a quantum plasma system (highly dense) 
consisting of non-relativistic degenerate light and heavy particle species. 

 

For a non-relativistic degenerate plasma particle species, the equation of state can be represented by 

(Chandrasekhar, 1931; Chandrasekhar, 1931a; Chandrasekhar, 1935) 𝑃௜ = 𝐾௜𝑁௜
ହ/ଷ, where Pi is the degenerate 

plasma particle pressure for i-species, Ni is the degenerate plasma particle number density for i-species, Ki is the  
mj constant of proportionality, and i = s, j stands for s-species and j–species, respectively. The proportionality 
constant  
Ki is given by 
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       where  𝐿௤ = 𝜋ℏ/𝑚௜𝑐. 

The manuscript is coordinated in the following fashion: The governing equations of the assumed plasma model 
are expressed in Sec. 2. The linear dispersion relation and the mKdV equation are derived in Sec. 3 and 4, 
respectively. The graphical and numerical observations are presented in Sec. 5. Finally, the summary of our 
results and discussion are provided in Sec. 6. 

2. GOVERNING EQUATIONS 

We assume a nonplanar geometry (spherical) and examine the fundamental properties of the SGPS for both 
linear and nonlinear cases in a quantum plasma system (which is highly dense and degenerate) containing 
arbitrary number of non-relativistic degenerate light particle species s and heavy particle species j. 
According to Fowler (Fowler, 1994), who has revisited the work of Chandrasekhar (Chandrasekhar, 1931), the 
pressure balance equation is 

       𝐾௦
డேೞ

ఱ/య

డ௥
= −𝑚௦𝑁௦
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డ௥
 .                                                                                                                              (2) 

The normalized form of Eq. (2) is  

      𝜌௦ = ቂ1 −
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The normalized continuity and momentum balance equations for heavy particle species are given by 

      
డఘೕ

డ௧
+

ଵ

௥ഌ

డ

డ௥
൫𝑟ఔ𝜌௝𝑢௝൯ = 0,           (4) 

     
డ௨ೕ

డ௧
+ 𝑢௝

డ௨ೕ 

డ௥
= −

డట

డ௥
 −

ଷ

ଶ
𝛽௝

డఘೕ
మ/య

డ௥
 .               (5) 

The Poisson’s equation for the self-gravitational potential is  
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ቁ = ∑ 𝛾𝑠(𝜌𝑠𝑠 − 1) + ∑ 𝛿𝑗(𝜌𝑗𝑗 − 1),        (6) 

 

where ν = 2 (ν = 0) for spherical (planar) geometry; 𝜌௦(𝜌௝) is the mass density of the degenerate light(heavy) 
particle species s(j), and is normalized by the equilibrium mass density ρs0(ρj0) of the degenerate particle species 

s(j); 𝑢௝is the speed of the degenerate fluid of species j, and is normalized by  𝐶௤ =
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is the rest mass of carbon(electron); ψ is the self-gravitational potential, and is normalized by 𝐶௤
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, in which 𝑚௦ (𝑚௝ ) is the mass of the degenerate particle 

species s(j); 𝜌௦ = 𝑚௦𝑛௦and 𝜌௝ = 𝑚௝𝑛௝. The time variable (t) is normalized by the inverse of the carbon Jeans 

frequency (Jeans, 1929) 𝜔௃௖ = ඥ4𝜋𝐺𝜌௖; 𝑟is the space variable normalized by𝐿௤ = 𝐶௤/𝜔௃௖; 𝛾௦ = 𝜌
𝑠0

/𝜌
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, and 
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 . 

3. LINEAR DISPERSION RELATION 

We assume ν = 0 (one dimensional geometry) to get the linear dispersion relation for the self-gravitational 
perturbation in which the physics remains unchanged. Linearizing Equations (4) - (6) and assuming that all the 
perturbed quantities are proportional to exp (−𝑖𝜔𝑡 + 𝑖𝑘𝑟), where ω is the angular frequency (normalized by 
 𝜔௃௖ ) and k is the constant of propagation (normalized by 𝐿௤

ିଵ) of the self-gravitational perturbation mode 
(SGPM),and carrying-out Fourier transformation, the linear dispersion relation can be written as 

      ∑
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  .            (7) 
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The above equation represents the linear dispersion relation in general form and is applicable for any kind of 
astrophysical compact object like white dwarfs and neutron stars. For example, if we consider white dwarfs with 
electrons as the degenerate light particle species (s-species), and 𝐶଺

ଵଶ  and 𝑅𝑏 ଷ଻
  ଼ହ as the degenerate heavy particle 

species (j-species) then the dispersion relation becomes 
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ቃ
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.         (8) 

Equation (8) consists of both real and imaginary parts.  

4. DERIVATION OF mKDV EQUATION 

To investigate the nonlinear properties of the SGPM in the plasma system under consideration, we must 
consider the nonlinear terms in Equations (3) - (6). Therefore, in order to study the nonlinear propagation of this 
mode, we first introduce the stretched coordinates (Maxon and Viecelli, 1974; Mamun and Shukla, 2002) 

    𝜉 = 𝜖ଵ/ଶ൫𝑟 − 𝑉௣𝑡൯ ,                          (9) 

     𝜏 = 𝜖ଷ/ଶ𝑡 ,                         (10)  

Here, 𝑉௣  represents the phase speed of the wave and 𝜖 measures the weakness of the amplitude or dispersion 

(0 < 𝜖 < 1). Power series expansion of 𝜌௝, 𝑢௝, and 𝜓 becomes 
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ቑ         (11) 

With the help of Eq. (11), various equations can be obtained in powers of ϵ. The lowest order in ϵ, Equations (3) 
- (6) give 
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If we consider the next higher order for ϵ, we obtain the following equations 
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and 
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Combining Equations (12) - (14), we readily obtain a mKdV type equation (containing negative dispersion 
coefficient) in the following form  
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5. GRAPHICAL AND NUMERICAL OBSERVATIONS 

From graphical representation of the linear dispersion relation [Equation (8)], it is clear that both stable and 
unstable regions exist. Here stable region represents real part and unstable region represents imaginary parts. 
The variations of ω2 with electron number density 𝑛௘଴and wave number k, with carbon number density 𝑛௖଴and 
wave number k, with rubidium number density 𝑛௥଴ and wave number k are shown in Figs. 1, 2, and 3 
respectively. Real ω versus k and imaginary ω versus k curves are shown in Figures 4 and 5, respectively. 

It is clear from Figure 1 that the frequency increases when the number density of electron increases and the 
position of unstable region shifted as the number density of electron increases. The frequency variation with 
carbon number density which is displayed in Figure 2 is different from Figure 1. In Figure 2, we see that the 
position of unstable region depends only on the carbon number density not on the wave number when the 
carbon number density is very low. The frequency also decreases as the carbon number density increases. 
Figure 3 shows that the frequency and the position of unstable region remain same as the rubidium number 
density changes (increases or decreases). Figures 4 and 5 discloses that the frequency of the SGPM increases 
exponentially with propagation constant (or decreases exponentially with wavelength) and the growth rate (the 
positive imaginary part of ω) of the SGPM decreases almost exponentially with propagation constant (or 
increases almost exponentially with wavelength), respectively. 

We have already mentioned that ν = 0 indicates planar geometry.  The steady state solution of Equation (15) 
with ν = 0 is obtained by transforming 𝜉  and 𝜏  to 𝜁 = 𝜉 − 𝑢଴𝜏  and 𝜏 = 𝜏 , where 𝑢଴  is a constant velocity 

normalized to 𝐶௤ , and imposing the appropriate boundary conditions, viz., 𝜓ଵ → 0 ,
ௗటభ

ௗ఍
→ 0 , 

ௗమటభ

ௗ఍మ
→ 0  at 

𝜁 → ±∞. Thus, we can express the steady state solution of Equation (15) as 

𝜓ଵ = 𝜓௠𝑆𝑒𝑐ଶ ቂ
఍

୼
ቃ,  (16) 

 
Figure 1: (Color online) Variation of ω2 with 𝑛௘଴(number density of electron at equilibrium) and k for  𝑛௖଴=1030       

cm-3, 𝑛௥଴= 1030 cm-3, mc = 12mp, and  𝑚௥= 85𝑚௣(𝑚௣represents the proton mass). 

 

where 𝜓௠ =
ଷ௨బ

஺
  is the amplitude and Δ = ඥ4𝐵/𝑢଴  is the width of the SGPS. From Equation (16), it is 

clear that the self-gravitational potential becomes positive when the velocity u0 >0. We have also observed 
that as u0 increases 𝜓௠increases while Δdecreases. The SGPS obtained by solving Eq. (15) numerically is 
depicted in Figure 6. Figure 6 reveals that the SGPS in the planar geometry are U-shaped structures and 
are independent of 𝜏. 
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Figure 2: (Color online) Showing the variation of ω2 with 𝑛௖଴ (carbon number density at equilibrium) and k for 
𝑛௘଴= 1036 cm-3, 𝑛௥଴= 1030 cm-3, mc= 12mp, and  𝑚௥= 85mp. 

 

 

Figure 3:  (Color online) Variation of ω2 with 𝑛௥଴(number density of rubidium at equilibrium) and k for neo=1036 

                cm-3, 𝑛௖଴= 1030 cm-3, mc= 12mp, and  𝑚௥= 85mp. 
 
 
 

 

Figure 4:  (color online) Showing the variation of 𝜔௥ (real part of ω) with k for 𝑛௖଴= 1030 cm-3, 𝑛௥଴ = 1030 cm-

3, 𝑛௘଴= 1036cm-3(Red line), 𝑛௘଴= 5 × 1035 cm-3(Blue line), 𝑛௘଴= 1035 cm-3(Green line), mc = 12mp, and 
𝑚௥= 85mp. 
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Figure 5:  (Color online) Showing the variation of ωi (imaginary part of ω) with k for 𝑛௖଴= 1030 cm-3, 𝑛௥଴= 1030 
cm-3, 𝑛௘଴ = 1036 cm-3(Red line), 𝑛௘଴ = 5 × 1035 cm-3(Blue line), 𝑛௘଴ = 1035 cm-3(Green line), me = 
9.1 × 10ିଶ଼, mc = 12mp, and 𝑚௥= 85mp. 

 

 

Figure 6:  (Color online) showing the time-varying SGPS illustrated by solving Equation (15) numerically. The 
other parameters are fixed at ν = 0, u0 = 0.05, 𝑛௘଴= 1036 cm-3, 𝑛௖଴= 1030 cm-3, 𝑛௥଴= 1030 cm-3, mc = 
12mp, and 𝑚௥= 85mp. 

 

 

Figure 7: (Color online) Showing the time-varying SGPS in spherical geometry (ν = 2) illustrated by solving 
Equation (15) numerically. The other parameters are fixed at u0 = 0.05, mc = 12 𝑚௣, 𝑚௥= 85 𝑚௣, 𝑛௖଴= 
1030cm-3, 𝑛௥଴= 1030 cm-3,and 𝑛௘଴= 1036 cm-3. 
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Figure 8: (color online) Variation of 𝛽௥with 𝑛௘଴for 𝑛௥଴= 1030 cm-3, mc = 12mp, and 𝑚௥= 85mp. 

 

 

Figure 9: (color online) Variation of βr with 𝑛௥଴for 𝑛௘଴= 1036 cm-3, mc = 12mp, and 𝑚௥= 85mp. 
 

Now, we want to give our attention to Equation (15) with the term (𝜈/2𝜏)𝜓ଵ(where 𝜈 = 2 indicates spherical 
geometry). We have solved Equation (15) numerically and have also examined the impact of spherical geometry 
on time-dependent SGPS in the plasma system under consideration. The results are displayed in Figure 7. In our 
numerical analysis, the initial condition is in the form of the stationary solution of Equation (15) without the 
term(𝜈/2𝜏)𝜓ଵ, i.e., in the form 𝜓ଵ = 𝜓௠𝑆𝑒𝑐ଶ[𝜁/Δ].  Figure 7 discloses the impact of spherical geometry on the 
fundamental properties of time dependent SGPS in the considered plasma model. 
 
Figure 7 also reveals that the spherical SGPS becomes planar SGPS when 𝜏 is large. This is due to the fact that 
the term relating spherical geometry, (𝜈/2𝜏)𝜓ଵ , becomes non-effective when 𝜏  is large. We found that as 
𝜏decreases the amplitude of the spherical SGPS increases. The variation of  βr with equilibrium number density 
of electron and with rubidium number density at equilibrium are shown in Figures 8 and 9, respectively. The 
variation of βc with equilibrium number density of electron and carbon number density at equilibrium are also 
same as Figures 8 and 9, respectively. 

6. RESULTS AND DISCUSSION 

We have assumed a general non-relativistic DQPS consisting of arbitrary number of light particle species s 
an00.d heavy particle species j (both light and heavy particle species are degenerate). We have examined the 
linear behavior of the SGPM in planar geometry and the non-linear characteristics of this SGPM in both planar 
and nonplanar (spherical) geometry. The findings of our investigation are reported as follows: 

i. The linear SGPM for white dwarf star is unstable when the wavelength is of the order of ∼ 104 cm. 
ii. The position of unstable region changes mainly with the change of the number density of electron and 

carbon. The frequency versus carbon number density (keeping electron and rubidium number density 
fixed) curve shows that the position of unstable region shifted as the carbon number density increases and 
the unstable region is almost independent of k when the carbon number density is very low. 
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iii. The frequency of this mode increases as the electron number density increases and decreases as the 
carbon number density increases and remains same as the rubidium number density increases or 
decreases. 

iv. As the wavelength of the SGPM increases the positive imaginary part of ω(which is also known as the 
growth rate) of the SGPM increases almost exponentially while the frequency of the SGPM decreases 
exponentially. 

v. When𝜏 decreases the amplitude of the spherical SGPS increases. 
vi. The spherical SGPS become planar for higher values of 𝜏. 
vii. The spherical SGPS has the larger value of amplitude than the planar SGPS. 

We finally stress that our findings will be useful in understanding the basic characteristics of the localized self-
gravitational disturbances in neutron stars and white dwarfs which have spherical shape and where the particle 
number density is of the order of 1030 cm−3 or even more. 
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