Finite Element Analysis of Convective Heat and Mass Transfer Flow through a Channel with Heat Sources and Chemical Reaction Effect

Salma Parvin*, Rehena Nasrin and M.A. Alim
Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh

ABSTRACT
Present study performs the heat and mass transfer analysis for laminar double-diffusive mixed convection flow in a parallel plate reactor with four heated cylinders. An external fluid flow enters from the left inlet and exits from the right. After entering the reactor, the fluid passes four heated cylinder. Two-dimensional continuity, momentum, energy and concentration equations govern the developed mathematical model. The governing non-dimensional equations are solved by using Galerkin finite element method with triangular grid discretization system. Numerical simulations are carried out for different combinations of the heat source parameter and results are presented in terms of streamlines, temperature and concentration distributions. The results indicate that the average Nusselt and Sherwood numbers at the heat and contaminant sources strongly depend on the heat source.

Keywords: Double diffusive mixed convection, parallel plate reactor, finite element method.

1. Introduction
Combined heat and mass transfer problems with chemical reaction are of importance in many processes and have, therefore, received a considerable amount attention in recent years. In processes such as drying, evaporation at the surface of a water body, energy transfer in a wet cooling tower and the flow in a desert cooler, in chemical reaction engineering heat and mass transfer occur simultaneously. Brown and Lai [1] numerically examined combined heat and mass transfer from a horizontal channel with an open cavity heated from below. Since heat and contaminant sources usually co-exist indoors, the present work is to numerically study the double-diffusive natural convection in a vented cavity due to the discrete heat and contaminant sources. Parvin et al. [2] analyzed numerically the effect of double-diffusive natural convection of a water–Al₂O₃ nanofluid in a partially heated enclosure with Soret and Dufour coefficients. Azad et al. [3] investigated double diffusive mixed convection in an open channel with a circular heater on the bottom wall. They found that average Nusselt number at the heat source decreases and overall mass transfer rate in terms of average Sherwood number increases with the rising of Lewis number. Muthucumaraswamy and Ganesan [4] studied effect of the chemical reaction and injection on flow characteristics in an unsteady upward motion of an isothermal plate. Das et al. [5] studied the effect of the first order homogeneous chemical reaction on the process of an unsteady flow past an infinite vertical plate with a constant heat and mass transfer. Chamkha [6] studied the MHD flow of a numerical of uniformly stretched vertical permeable surface in the presence of heat generation/absorption and a chemical reaction. He assumed that the plate is embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field.

Ibrahim et al. [7] have studied the effect of chemical reaction and radiation absorption on the unsteady MHD free convection flow past a semi infinite vertical permeable moving plate with heat source and suction. Kesavaiah et al [8] have studied the effect of the chemical reaction and radiation absorption on an unsteady MHD convective heat and mass transfer flow past a semi-infinite vertical permeable moving plate embedded in a porous medium with heat source and suction. Heat and mass transport in tubular packed reactors at reacting and non-reacting conditions was analyzed by Koning [9] where the most common models of wall-cooled tubular packed bed reactors were presented. The two dimensional axial plug flow model was used for a water gas shift reactor to compare heat conduction or mass diffusion with convective effect. Kugai [10] studied Heat and Mass Transfer in Fixed-bed Tubular Reactor. The two dimensional axial plug flow model was used for a water gas shift reactor to compare heat conduction or mass diffusion with convective effect in his study.

The objective of the present work is to investigate the effect of heat generation on the characteristics of the flow and heat/contaminant transport mechanism inside a chemical reactor channel in terms of streamlines, isotherms and iso-concentration lines.

2. Analysis
2.1. Physical Model
The domain under analysis is, as sketched in Figure 1(a)-(b), a two-dimensional cross section of a reactor channel of length L and height H with four heated tubes each of radius r, suffering the influence of a gravitational field. The centers of the heaters are located at (L/5, H/2), (2L/5, H/2), (3L/5, H/2) and (4L/5, H/2). The heaters are maintained at constant and uniform temperature Tᵢ and concentration cᵢ. The air flow is entering from the left with velocity Uᵢ, temperature Tᵢ.
and concentration \(c_i\), then passes the tubes and then the polluted hot air exhausted from the outlet opening at the right.

![Diagram of the problem](image)

Fig-1(a). 3-D geometry of the considered reactor

Fig-1(b). Schematic diagram of the problem

2.2. Mathematical Model

The governing mass, momentum, energy and species conservation equations have been presented by Deng et al. [11] for double-diffusive mixed convective flows driven by the combined effect of the internal buoyancy induced from temperature and concentration differences and the external mechanical driven forced flow from the inlet port. With use of the Boussinesq approximation, the dimensionless governing equations under steady-state condition are given by:

\[
\begin{align*}
\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} &= 0 \\
U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} &= -\frac{\partial P}{\partial x} + \frac{1}{Re} \left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} \right) \\
U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y} &= -\frac{\partial P}{\partial y} + \frac{1}{Re} \left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} \right) + Ri(\theta + NC) \\
U \frac{\partial \theta}{\partial x} + V \frac{\partial \theta}{\partial y} &= \frac{1}{RePr} \left(\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} \right) - H\theta \\
U \frac{\partial c_i}{\partial x} + V \frac{\partial c_i}{\partial y} &= \frac{1}{RePrLe} \left(\frac{\partial^2 c_i}{\partial x^2} + \frac{\partial^2 c_i}{\partial y^2} \right) - KC
\end{align*}
\]

The above equations are non-dimensionalized by using the following dimensionless variables

\[
X = \frac{x}{L}, \quad Y = \frac{y}{L}, \quad U = \frac{U}{U_i}, \quad V = \frac{V}{U_i}, \quad P = \frac{p}{\rho U_i^2}, \quad \theta = \frac{T - T_i}{T_h - T_i}, \quad C = \frac{c - C_i}{\Delta c}
\]

and the dimensionless parameters are Reynolds number \((Re)\), Grashof number \((Gr)\), Richardson number \((Ri)\), Prandtl number \((Pr)\), Lewis number \((Le)\), the buoyancy ratio \((N)\) and Chemical reaction parameter \((K)\) and they are defined as follows:

\[
Re = \frac{U_i L}{\nu}, \quad Gr = \frac{g \beta_i (T_h - T_i)L^3}{\nu^2}, \quad Ri = \frac{Gr}{Re^2},
\]

\[
Pr = \frac{\nu}{\alpha}, \quad Le = \frac{\alpha}{D}, \quad N = \frac{\beta_i \Delta c}{\beta_y (T_h - T_i)}, \quad K = \frac{kL^2}{D}, \quad H = \frac{Q L^2}{\alpha}
\]

where \(\nu\), \(\alpha\), \(D\), \(k\) and \(Q\) are kinematic viscosity, thermal diffusivity, solutal diffusivity, reaction coefficient and strength of heat generating source respectively. The buoyancy ratio measures the relative importance of solute and thermal diffusion in creating the density difference to drive the flow. It is clear that \(N\) is zero for pure thermally driven flows and infinity for pure solute driven flows.

The boundary conditions are

- at the inlet: \(U = 1\), \(V = \theta = C = 0\)
- at the circular tube walls: \(\frac{\partial \theta}{\partial n} = 0\), \(\frac{\partial C}{\partial n} = 0\)
- at other surfaces: \(U = V = 0\)
- The average Nusselt and Sherwood number may be expressed as

\[
Nu = -\frac{1}{S} \int_0^S \left(\frac{\partial \theta}{\partial x} \right)^2 + \left(\frac{\partial \theta}{\partial y} \right)^2 \, dS \quad \text{and} \quad Sh = -\frac{1}{S} \int_0^S \left(\frac{\partial c_i}{\partial x} \right)^2 + \left(\frac{\partial c_i}{\partial y} \right)^2 \, dS
\]

where \(S\) is the non-dimensional length of the heated/contaminant surface.

3. Computational methodology

Galerkin weighted residual method of finite element formulation is used to solve the governing equations for the present work. The application of this technique is well documented by Zienkiewicz and Taylor [12]. The nonlinear parametric solution technique is chosen to solve the governing equations. This approach will result in substantially fast convergence assurance. In addition,
the absolute convergence criteria are set to be 10^{-4} for velocities, energy and concentration.

4. Results and Discussion

The present investigation was carried out for heat generation parameter $H (= 0, 1, 5$ and $10)$ with $Ri = 1$, $Re = 100$, $Pr = 0.7$, $Le = 1$, $N = 1$, $K = 1$. Now in the following section, a detailed description of mixed convection with heat and mass transfer in a parallel plate reactor is given in terms of streamline, thermal and concentration contours for different H. In addition, the results for both average Nusselt and average Sherwood numbers at various H will be presented.

From Figures 2, it is observed that there is a common trend of the development of streamlines with increasing heat generation parameter. The streamlines are almost parallel to the channel wall and condensed in region between the circular heater and the channel wall. The streamlines become more condensed along the middle of the channel due to increasing heat generation effect. This indicates higher velocity.

As in Figure 3, isothermal lines have significant change due to the variation of H. variation. At $H = 0$, isothermal lines appear at the inlet portion of the channel. But for higher values of H, these lines spread all over the channel. It is seen from the figure that, at the highest value of H, the lower temperature lines remain at the left potion where as the higher temperature lines at the right exit port. Temperature gradient at the heat source becomes lower for increasing heat generation in the fluid. This happens because higher temperature of the fluid produces lower temperature difference between the heat source and the fluid. It is also clear that the higher temperature gradient exists at the first heater from the inlet and sequentially it reduces for the second, third and fourth.

Iso-concentration lines have also considerable change due to generating heat as shown in Figure 4. Iso-concentration lines spreads all over the channel. As heat generation increases these lines depart to the exit port which indicates higher mass transportation. This phenomenon is logical because heat generation causes higher velocity which leads to more concentration transfer.

Figure 2-4 exhibits the effect of H on the streamlines, isotherms and iso-concentrations. In fact, the analysis is performed at pure mixed convection regime by fixing $Ri = 1$. The values of heat generation parameter are $0, 1, 5$ and 10 are chosen to examine the evolution of streamline, isotherm and concentration patterns.

Figure 5 depicts the average heat transfer Nu at the four consecutive heaters for different H. Highest heat transfer rate is observed for the first heater and sequentially these values reduce for second, third and
fourth heater. This phenomenon is very logical because the flow intensity becomes lower for the last heater due to the obstacles. Increasing H decreases the value of Nu due to lowering the temperature difference.

The average mass transfer Sh at the inlet port for different heat generation parameter is shown in Figure 6. Enhanced mass transfer rate are observed for increasing the heat generation.

![Fig-6. Effect of H on mass transfer](image)

5. Conclusion
Laminar double-diffusive mixed convection flow in a parallel plate reactor with four heated cylinders for various heat generations has been studied. The following major conclusions are drawn:

- Increasing H has significant effects on flow, temperature and concentrations.
- Lower temperature and higher concentration gradient observe for higher H.
- Heat transfer reduces where as mass transfer enhance for rising values of H.
- The heater placed near the inlet and outlet gives respectively the highest and lowest heat transfer rate.

In general the effect of heat generation plays an important role in both heat and mass transfer for such type of reactor.

NOMENCLATURE

- H: height of the reactor
- K: Chemical reaction parameter
- L: length of the reactor
- Le: Lewis number
- N: buoyancy ratio
- Nu: average Nusselt number
- Pr: Prandtl number
- Re: Reynolds number
- Ri: Richardson number
- Sh: average Sherwood number
- T: temperature
- U, V: nondimensional velocity components
- u, v: velocity components
- X, Y: nondimensional coordinate
- x, y: Cartesian coordinate

REFERENCES

[8] DC.H. Kesavaiah, P.V. Satyanarayana and S. Venkataramana, Effects of the chemical

